【題目】如圖扇形AOB是一個觀光區的平面示意圖,其中∠AOB的圓心角為 ,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區內鋪設一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設∠AOC=θ,
(1)用θ表示CD的長度,并寫出θ的取值范圍.
(2)當θ為何值時,觀光道路最長?
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),F(﹣c,0)為其左焦點,點P(﹣
,0),A1 , A2分別為橢圓的左、右頂點,且|A1A2|=4,|PA1|=
|A1F|.
(1)求橢圓C的方程;
(2)過點A1作兩條射線分別與橢圓交于M、N兩點(均異于點A1),且A1M⊥A1N,證明:直線MN恒過x軸上的一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點在直角坐標系的原點,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數方程為 .試在曲線C上求一點M,使它到直線l的距離最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】集合L={l|l與直線y=x相交,且以交點的橫坐標為斜率}.若直線l′∈L,點P(﹣1,2)到直線l′的最短距離為r,則以點P為圓心,r為半徑的圓的標準方程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記等差數列{an}的前n項和為Sn .
(1)求證:數列{ }是等差數列;
(2)若a1=1,對任意的n∈N*,n≥2,均有 ,
,
是公差為1的等差數列,求使
為整數的正整數k的取值集合;
(3)記bn=a (a>0),求證:
≤
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學為研究函數 的性質,構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則AP+PF=f(x).請你參考這些信息,推知函數f(x)的值域是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+x2 .
(Ⅰ)若函數g(x)=f(x)﹣ax在其定義域內為增函數,求實數a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數F(x)存在兩個零點m,n(0<m<n),且2x0=m+n.問:函數F(x)在點(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差為2的等差數列,數列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設 ,求{Cn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,學校決定利用隨機數表法從中抽取100人進行成績抽樣調查,先將800人按001,002,…,800進行編號.
(1)如果從第8行第7列的數開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數學與地理的水平測試成績如下表:
人數 | 數學 | |||
優秀 | 良好 | 及格 | ||
地理 | 優秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
成績分為優秀、良好、及格三個等級;橫向、縱向分別表示地理成績與數學成績,例如:表中數學成績為良好的人數共有20+18+4=42.
①若在該樣本中,數學成績優秀率是30%,求a,b的值;
②在地理成績及格的學生中,已知a≥11,b≥7,求數學成績優秀人數比及格人數少的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com