【題目】(1)討論函數f(x)=ex的單調性,并證明當x>0時,(x-2)ex+x+2>0.
(2)證明:當a∈[0,1) 時,函數g(x)= (x>0) 有最小值.設g(x)的最小值為h(a),求函數h(a)的值域.
【答案】(1)在和
上都是遞增,證明見解析;(2)證明見解析,
.
【解析】試題分析:(1)求導后分析導數大于零(或小于零)的解,即可求出單調區間,利用極小值即可證明不等式成立;(2)利用二次求導求函數的單調性最值,從而求出h(a)的值域.
試題解析:
(1)f(x)=ex,x∈(-∞,-2)∪(-2,+∞).
f ′(x)=ex=
,
因為當x∈(-∞,-2)∪(-2,+∞)時,f ′(x)>0,
所以f(x)在(-∞,-2)和(-2,+∞)上單調遞增,
所以x>0時, ex>f(0)=-1,
所以(x-2)ex+x+2>0.
(2)g′(x)=
=
=,a∈[0,1).
由(1)知,當x>0時,f(x)=·ex的值域為(-1,+∞),只有一解,使得
·et=-a,t∈(0,2].
當x∈(0,t)時g′(x)<0,g(x)單調遞減;
當x∈(t,+∞)時g′(x)>0,g(x)單調遞增.
h(a)==
=
,
記k(t)=,在t∈(0,2]時,k′(t)=
>0,
所以k(t)單調遞增,
所以h(a)=k(t)∈.
科目:高中數學 來源: 題型:
【題目】已知,
分別是雙曲線
的左頂點、右焦點,過
的直線
與
的一條漸近線垂直且與另一條漸近線和
軸分別交于
,
兩點.若
,則
的離心率是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設關于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數
(1)證明f(x)在區間(α,β)上是增函數;
(2)當a為何值時,f(x)在區間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家具公司制作木質的椅子和書桌兩種家具,需要木工和漆工兩道工序,已知木工平均6個小時做一把椅子,10個小時做一張書桌,該公司每月木工最多有6000個工作時;漆工平均4個小時漆一把椅子,2個小時漆一張書桌,該公司每月漆工最多有2600個工作時又已知制作一把椅子和一張書桌的利潤分別是15元和20元,根據以上條件,怎樣安排每月的生產,才能獲得最大的利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= lnx-x+
,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設a∈(1,e],當x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究機構為了了解各年齡層對高考改革方案的關注程度,隨機選取了200名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分第一~五組區間分別為
,
,
,
,
,
).
(1)求選取的市民年齡在內的人數;
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發言,求作重點發言的市民中至少有一人的年齡在內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:已知函數在
上的最小值為
,若
恒成立,則稱函數
在
上具有“
”性質.
()判斷函數
在
上是否具有“
”性質?說明理由.
()若
在
上具有“
”性質,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com