已知橢圓的左、右焦點分別為
、
, 焦距為2,過
作垂直于橢圓長軸的弦長
為3
(1)求橢圓的方程;
(2)若過點的動直線
交橢圓于A、B兩點,判斷是否存在直線
使得
為鈍角,若存在,求出直線
的斜率
的取值范圍
(1)橢圓方程為;(2)存在定點
,使以AB為直徑的圓恒過點
解析試題分析:(1) 過
作垂直于橢圓長軸的弦長為
,由此可得
,解得
,從而可得橢圓的方程 (2)首先考慮直線
的斜率不存在的情況 當過
直線
的斜率存在時,設直線
的方程為
,設
, 由
得:
當
為鈍角時,
,利用韋達定理將不等式化為含
的不等式,解此不等式即可得
的取值范圍
試題解析:(1)依題意
(2分)
解得,∴橢圓的方程為:
(4分)
(2)(i)當過直線
的斜率不存在時,點
,
則,顯然
不為鈍角 (5分)
(ii)當過直線
的斜率存在時,設斜率為
,則直線
的方程為
,
設, 由
得:
恒成立
(8分)
(11分)
當為鈍角時,
<0,
綜上所述,滿足條件的直線斜率k滿足且
(13分)
考點:直線與圓錐曲線
科目:高中數學 來源: 題型:解答題
如圖所示,F1、F2分別為橢圓C:的左、右兩個焦點,A、B為兩個頂點,該橢圓的離心率為
,
的面積為
.
(1)求橢圓C的方程和焦點坐標;
(2)作與AB平行的直線交橢圓于P、Q兩點,
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F是中心在原點、焦點在x軸上的橢圓C的右焦點,直線l:x=4是橢圓C的右準線,F到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為
,且過點P
,A為上頂點,F為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,
過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設動直線l與拋物線E相切于點P,與直線y=-1相交于點Q.證明:以PQ為直徑的圓恒過y軸上某定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的兩個焦點是)和
,并且經過點
,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F.
(1)求橢圓C和拋物線E的標準方程;
(2)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線C1:x2+by=b2經過橢圓C2:+
=1(a>b>0)的兩個焦點.
(1)求橢圓C2的離心率;
(2)設點Q(3,b),又M,N為C1與C2不在y軸上的兩個交點,若△QMN的重心在拋物線C1上,求C1和C2的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com