精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

已知曲線在平面直角坐標系下的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.

(1)求曲線的普通方程及極坐標方程;

(2)直線的極坐標方程是,射線 與曲線交于點與直線交于點,求線段的長.

【答案】(1), ;(2).

【解析】試題分析:(1)利用可消去參數,經圓的參數方程化為普通方程.令,可將圓的普通方程化為極坐標方程.(2)將 分別代入直線的極坐標方程和圓的極坐標方程,可求得兩點對應的的值,兩者作差即可求得的長.

試題解析:(1)因為曲線的參數方程為為參數),

消去參數得曲線的普通方程為,

, ,

∴曲線的極坐標方程為.

(2)由

故射線與曲線的交點的極坐標為;

,

故射線與直線的交點的極坐標為,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知⊙Cx2y22x4y10.

(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.

(2)從圓外一點P(x0y0)向圓引切線PM,M為切點,O為原點,若|PM||PO|,求使|PM|最小的P點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(其中為常數,).(Ⅰ)求函數的單調區間;(Ⅱ)當時,是否存在實數,使得當時,不等式恒成立?如果存在,求的取值范圍;如果不存在,請說明理由(其中是自然對數的底數,).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為,且是偶函數.

(1)求實數的值;

(2)證明:函數上是減函數;

(3)當時, 恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發生有責任道路交通事故

下浮10%

上兩個年度未發生有責任道路交通事故

下浮20%

上三個及以上年度未發生有責任道路交通事故

下浮30%

上一個年度發生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發生有責任道路交通死亡事故

上浮30%

某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:

類型

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定,,記為某同學家的一輛該品牌車在第四年續保時的費用,求的分布列與數學期望;(數學期望值保留到個位數字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調性;

(2)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】寫出下列函數的單調區間.

(1)y=|x+1|; (2)y=-x2+ax;

(3)y=|2x-1|; (4)y=-.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電子元件廠對一批新產品的使用壽命進行檢驗,并且廠家規定使用壽命在為合格品,使用壽命超過500小時為優質品,質檢科抽取了一部分產品做樣本,經檢測統計后,繪制出了該產品使用壽命的頻率分布直方圖(如圖):

(1)根據頻率分布直方圖估計該廠產品為合格品或優質品的概率,并估計該批產品的平均使用壽命;

(2)從這批產品中,采取隨機抽樣的方法每次抽取一件產品,抽取4次,若以上述頻率作為概率,記隨機變量為抽出的優質品的個數,列出的分布列,并求出其數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用、、三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數據統計如表:

方式

實施地點

大雨

中雨

小雨

模擬實驗總次數

4次

6次

2次

12次

3次

6次

3次

12次

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,請你根據人工降雨模擬實驗的統計數據:

(Ⅰ)求甲、乙、丙三地都恰為中雨的概率;

(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達到理想狀態,乙地必須是大雨才達到理想狀態,丙地只能是小雨或中雨即達到理想狀態,記“甲、乙、丙三地中達到理想狀態的個數”為隨機變量,求隨機變量的分布列和數學期望

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视