【題目】(本小題滿分12分)
已知函數,
且
.
(Ⅰ)求的定義域;
(Ⅱ)判斷的奇偶性并予以證明;
(Ⅲ)當時,求使
的
的取值范圍.
【答案】(Ⅰ)解: ∵,
∴2分
解得. 4分
故所求定義域為. …………………………………………5分
(Ⅱ)由(Ⅰ)知的定義域為
,
且7分
, 9分
故為奇函數. ………………………………………………………………10分
(Ⅲ)因為f(x)>0,
所以loga(x+1)-loga(1-x)>0,即loga(x+1)>loga(1-x) 12分
因為當時,y=logax在(0,+)內是增函數,
所以x+1>1-x,所以x>0, 13分
又的定義域為
,所以
.
所以使的
的取值范圍是
. ……………………14分
【解析】
解: (Ⅰ),則
解得
.
故所求定義域為.…………………………………4分
(Ⅱ)由(Ⅰ)知的定義域為
,
且
,
故為奇函數. ………………………………………………9分
(Ⅲ)因為當時,
在定義域
內是增函數,
所以.
解得.
所以使的
的取值范圍是
.…………………12分
科目:高中數學 來源: 題型:
【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為2
+
的△ABC滿足sinA:sinB:sinC=(
﹣1):
:(
+1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓與雙曲線有相同的焦點,
,橢圓的一個短軸端點為
,直線
與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為
,
,則
的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的方程為 ,⊙C的極坐標方程為ρ=4cosθ+2sinθ.
(1)求直線l和⊙C的普通方程;
(2)若直線l與圓⊙C交于A,B兩點,求弦AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE,構成四棱錐A1﹣BCDE,若M為線段A1C的中點,在翻轉過程中有如下4個命題: ①MB∥平面A1DE;
②存在某個位置,使DE⊥A1C;
③存在某個位置,使A1D⊥CE;
④點A1在半徑為 的圓面上運動,
其中正確的命題個數是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題 :
表示雙曲線,命題
:
表示橢圓。
(1)若命題與命題
都為真命題,則
是
的什么條件?
(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
(2)若 為假命題,且
為真命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,離心率為
,動點M(2,t)(
).
(1)求橢圓的標準方程;
(2)求以OM為直徑且截直線所得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作OM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
(其中
為圓心)上的每一點橫坐標不變,縱坐標變為原來的一半,得到曲線
.
(1)求曲線的方程;
(2)若點為曲線
上一點,過點
作曲線
的切線交圓
于不同的兩點
(其中
在
的右側),已知點
.求四邊形
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com