【題目】四棱錐的底面是正方形,
平面
,且
,該四棱錐的五個頂點都在同一個球面上,
分別是棱
的中點,直線
被球面所截得的線段長為
,則該球的表面積為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】對于函數,若存在正常數
,使得對任意的
,都有
成立,我們稱函數
為“
同比不減函數”.
(1)求證:對任意正常數,
都不是“
同比不減函數”;
(2)若函數是“
同比不減函數”,求
的取值范圍;
(3)是否存在正常數,使得函數
為“
同比不減函數”,若存在,求
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,傾斜角為
的直線
過點
.以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)若直線與
交于
,
兩點,且
,求傾斜角
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次期末數學測試中,唐老師任教班級學生的考試得分情況如表所示:
分數區間 | |||||
人數 | 2 | 8 | 32 | 38 | 20 |
(1)根據上述表格,試估計唐老師所任教班級的學生在本次期末數學測試的平均成績;
(2)現從成績在中按照分數段,采取分層抽樣的方法隨機抽取5人,再在這5人中隨機抽取2人作小題得分分析,求恰有1人的成績在
上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別為
、
,上頂點為
,在
軸負半軸上有一點
,滿足
為線段
的中點,且
.
(1)求橢圓的離心率;
(2)若過、
、
三點的圓與直線
相切,求橢圓
的方程;
(3)在(2)的條件下,過右焦點作斜率為
的直線與橢圓
交于
、
兩點,在
軸上是否存在點
使得以
、
為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀:
已知、
,
,求
的最小值.
解法如下:,
當且僅當,即
時取到等號,
則的最小值為
.
應用上述解法,求解下列問題:
(1)已知,
,求
的最小值;
(2)已知,求函數
的最小值;
(3)已知正數、
、
,
,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
是
上一點.
(1)求橢圓的方程;
(2)設是
分別關于兩坐標軸及坐標原點的對稱點,平行于
的直線
交
于異于
的兩點
.點
關于原點的對稱點為
.證明:直線
與
軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體,點
是棱
的中點,設直線
為
,直線
為
.對于下列兩個命題:①過點
有且只有一條直線
與
、
都相交;②過點
有且只有一條直線
與
、
都成
角.以下判斷正確的是( )
A.①為真命題,②為真命題B.①為真命題,②為假命題
C.①為假命題,②為真命題D.①為假命題,②為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】依法納稅是每個公民應盡的義務,個人取得的所得應依照《中華人民共和國個人所得稅法》向國家繳納個人所得稅(簡稱個稅).2019年1月1日起,個稅稅額根據應納稅所得額、稅率和速算扣除數確定,計算公式為:
個稅稅額=應納稅所得額×稅率-速算扣除數.
應納稅所得額的計算公式為:
應納稅所得額=綜合所得收入額-免征額-專項扣除-專項附加扣除-依法確定的其他扣除.
其中免征額為每年60000元,稅率與速算扣除數見下表:
級數 | 全年應納稅所得額所在區間 | 稅率( | 速算扣除數 |
1 | 3 | 0 | |
2 | 10 | 2520 | |
3 | 20 | 16920 | |
4 | 25 | 31920 | |
5 | 30 | 52920 | |
6 | 35 | 85920 | |
7 | 45 | 181920 |
備注:
“專項扣除”包括基本養老保險、基本醫療保險、失業保險等社會保險費和住房公積金。
“專項附加扣除”包括子女教育、繼續教育、大病醫療、住房貸款利息或者住房租金、贍養老人等支出。
“其他扣除”是指除上述免征額、專項扣除、專項附加扣除之外,由國務院決定以扣除方式減少納稅的優惠政策規定的費用。
某人全年綜合所得收入額為160000元,假定繳納的基本養老保險、基本醫療保險、失業保險等社會保險費和住房公積金占綜合所得收入額的比例分別是,
,
,
,專項附加扣除是24000元,依法確定其他扣除是0元,那么他全年應繳納綜合所得個稅____元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com