精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系,已知曲線的參數方程為,(為參數),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)試判斷點是否在直線,并說明理由;

(2)設直線與曲線交于點,,的值.

【答案】(1)見解析;(2)

【解析】

(1)把直線的極坐標方程為化為直角坐標方程,代入檢驗即可;

(2)把曲線的參數方程化為普通方程,再把直線l的參數方程代入普通方程可得,借助韋達定理可得結果.

(1)由

即直線的直角坐標方程為,

經檢驗滿足方程,

所以點在直線上.

(2)曲線的參數方程為為參數),

所以曲線的普通方程為.

由(1)可得直線的參數方程為為參數),

將參數方程代入曲線

,對應的參數為,,則,

所以,

所以的值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點.

(1)求橢圓的標準方程;

(2)過點的直線交橢圓于兩點,軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,我國工業經濟發展迅速,工業增加值連年攀升,某研究機構統計了近十年(從2008年到2017年)的工業增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號

1

2

3

4

5

6

7

8

9

10

工業增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據表格數據,得到下面的散點圖及一些統計量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據散點圖和表中數據,此研究機構對工業增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數,其擬合指數;研究人員乙采用函數,其擬合指數;研究人員丙采用線性函數,請計算其擬合指數,并用數據說明哪位研究人員的函數類型擬合效果最好.(注:相關系數與擬合指數滿足關系).

(2)根據(1)的判斷結果及統計值,建立關于的回歸方程(系數精確到0.01);

(3)預測到哪一年的工業增加值能突破30萬億元大關.

附:樣本 的相關系數,

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正整數數列滿足試求通項公式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20個兩兩不同的正整數,且集合中有201個不同的元素.求集合中不同元素個數的最小可能值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調查該校學生每周平均體育運動時間的情況,從高一高二基礎年級與高三三個年級學生中按照4:3:3的比例分層抽樣,收集300位學生每周平均體育運動時間的樣本數據(單位:小時),得到如圖所示的頻率分布直方圖。

(1)據圖估計該校學生每周平均體育運動時間.并估計高一年級每周平均體育運動時間不足4小時的人數;

(2)規定每周平均體育運動時間不少于6小時記為“優秀”,否則為“非優秀”,在樣本數據中,有30位高三學生的每周平均體育運動時間不少于6小時,請完成下列列聯表,并判斷是否有99%的把握認為“該校學生的每周平均體育運動時間是否“優秀”與年級有關”.

基礎年級

高三

合計

優秀

非優秀

合計

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】201912月份,我國湖北武漢出現了新型冠狀病毒,人感染后會出現發熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了增強居民防護意識,增加居民防護知識,某居委會利用網絡舉辦社區線上預防新冠肺炎知識答題比賽,所有居民都參與了防護知識網上答卷,最終甲、乙兩人得分最高進入決賽,該社區設計了一個決賽方案:①甲、乙兩人各自從個問題中隨機抽.已知這個問題中,甲能正確回答其中的個,而乙能正確回答每個問題的概率均為,甲、乙兩人對每個問題的回答相互獨立、互不影響;②答對題目個數多的人獲勝,若兩人答對題目數相同,則由乙再從剩下的道題中選一道作答,答對則判乙勝,答錯則判甲勝.

1)求甲、乙兩人共答對個問題的概率;

2)試判斷甲、乙誰更有可能獲勝?并說明理由;

3)求乙答對題目數的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業產值在2008年~2017年的年增量(即當年產值比前一年產值增加的量)統計圖如圖所示(單位:萬元),下列說法正確的是( )

A. 2009年產值比2008年產值少

B. 從2011年到2015年,產值年增量逐年減少

C. 產值年增量的增量最大的是2017年

D. 2016年的產值年增長率可能比2012年的產值年增長率低

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视