精英家教網 > 高中數學 > 題目詳情

【題目】某學校為倡導全體學生為特困學生捐款,舉行一元錢,一片心,誠信用水活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統計了連續5天的售出和收益情況,如表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150

(1)求y關于x的線性回歸方程;

(2)預測售出8箱水的收益是多少元?

附:回歸直線的最小二乘法估計公式分別為: =, =,

【答案】(1) (2)186

【解析】試題分析:(Ⅰ)首先求出 的平均數,得到樣本中心點,利用最小二乘法求出線性回歸方程的系數,即可寫出線性回歸方程.
(Ⅱ)當自變量取8時,把8代入線性回歸方程,求出銷售額的預報值

試題解析:((1) 由所給數據計算得=(7+6+6+5+6)=6,

==146,

=72+62+62+52+62=182,

===20,

==146﹣20×6=26,

所求回歸直線方程為=20x+26;

(2)將x=8代入回歸方程可預測售出8箱水的收益為

=20×8+26=186(元).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?

相關公式:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(12分)若數列{an}是的遞增等差數列,其中的a3=5,且a1,a2,a5成等比數列,

(1)求{an}的通項公式;

(2)設bn= ,求數列{bn}的前項的和Tn

(3)是否存在自然數m,使得 <Tn對一切nN*恒成立?若存在,求出m的值;

若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現在很多人喜歡自助游,2017年孝感楊店桃花節,美麗的桃花風景和人文景觀迎來眾多賓客.某調查機構為了了解自助游是否與性別有關,在孝感桃花節期間,隨機抽取了人,得如下所示的列聯表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本,女性應抽人,請將上面的列聯表補充完整,并據此資料能否在犯錯誤的概率不超過前提下,認為贊成自助游是與性別有關系?

2若以抽取樣本的頻率為概率從旅游節大量游客中隨機抽取人贈送精美紀念品,記這人中贊成自助游人數為的分布列和數學期望.

:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,已知a=2,b=3,cosC=
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知焦點在軸上的橢圓的中心是原點,離心率為雙曲線離心率的一半,直線被橢圓截得的線段長為.直線 軸交于點,與橢圓交于兩個相異點,且.

(1)求橢圓的方程;

(2)是否存在實數,使?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)當a=3時,解不等式f(x)>0;
(2)當x∈(﹣∞,2)時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果一個實數數列{an}滿足條件: (d為常數,n∈N*),則稱這一數列“偽等差數列”,d稱為“偽公差”.給出下列關于某個偽等差數列{an}的結論:①對于任意的首項a1 , 若d<0,則這一數列必為有窮數列;②當d>0,a1>0時,這一數列必為單調遞增數列;③這一數列可以是一個周期數列;④若這一數列的首項為1,偽公差為3,- 可以是這一數列中的一項;n∈N*⑤若這一數列的首項為0,第三項為﹣1,則這一數列的偽公差可以是 .其中正確的結論是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在上的奇函數滿足, 為數列的前項和,且,則__________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视