【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=4,求平面PBC與平面PDC所成角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)通過證明BD⊥AC和BD⊥PA,可證得結論;
(2)以BD與AC的交點O為坐標原點,OB,OC所在直線為x軸,y軸,過點O且垂直于平面ABCD的直線為z軸,建立如圖所示的空間直角坐標系,分別計算平面PBC的一個法向量為n1,平面PDC的一個法向量為n2,利用向量夾角公式可得解.
(1)證明:因為底面ABCD是菱形,所以BD⊥AC.
又PA⊥平面ABCD,
所以BD⊥PA.又PA∩AC=A,所以BD⊥平面PAC.
(2)以BD與AC的交點O為坐標原點,OB,OC所在直線為x軸,y軸,過點O且垂直于平面ABCD的直線為z軸,建立如圖所示的空間直角坐標系.
由已知可得,AO=OC=,OD=OB=1,
所以P(0,-,4),B(1,0,0),C(0,
,0),D(-1,0,0),
(0,2
,-4),
=(-1,
,0),
=(-1,-
,0).
設平面PBC的一個法向量為n1=(x1,y1,z1),平面PDC的一個法向量為n2=(x2,y2,z2),
由可得令x1=
,可得n1=
.
同理,由可得n2=,
所以cos〈n1,n2〉==-
,所以平面PBC與平面PDC所成角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發送語音短信、視頻、圖片和文字,一經推出便風靡全國,甚至涌現出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間情況,某經銷化妝品的微商在一廣場隨機采訪男性、女性微信用戶各50名.其中每天玩微信時間超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如表:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有60%的把握認為“微信控”與“性別”有關?
(2)現從參與調查的女性用戶中按分層抽樣的方法選出5人贈送營養面膜1份,求所抽取的5人中“微信控”和“非微信控”的人數;
(3)從(2)中抽選取的5人中再隨機抽取3人贈送價值200元的護膚品套裝,記這3人中“微信控”的人數為X,試求X的分布列及數學期望及方差.
參考公式:,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.若正數是等差數列,則
是等比數列
B.若正數是等比數列,則
是等差數列
C.若正數是等差數列,則
是等比數列
D.若正數是等比數列,則是
等差數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】探究函數的圖像時,列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
觀察表中y值隨x值的變化情況,完成以下的問題:
(1)函數的遞減區間是 ,遞增區間是 ;
(2)若對任意的恒成立,試求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的圖象過原點,且在
處取得極值,直線
與曲線
在原點處的切線互相垂直.
(Ⅰ)求函數的解析式;
(Ⅱ)若對任意實數的,恒有
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著電子產品的不斷更新完善,更多的電子產品逐步走入大家的世界,給大家帶來了豐富多彩的生活,但也帶來了一些負面的影響,某公司隨即抽取人對某電子產品是否對日常生活有益進行了問卷調查,并對參與調查的
人中的年齡層次以及意見進行了分類,得到的數據如下表所示:
|
| 總計 | |
認為某電子產品對生活有益 | |||
認為某電子產品對生活無益 | |||
總計 |
(1)根據表中的數據,能否在犯錯誤的概率不超過的前提下,認為電子產品的態度與年齡有關系?
(2)為了答謝參與問卷調查的人員,該公司對參與本次問卷調查的人員進行抽獎活動,獎金額以及發放的概率如下:
獎金額 |
|
|
|
概率 |
現在甲、乙兩人參與了抽獎活動,記兩人獲得的獎金總金額為,求
的分布列和數學期望.
參與公式:
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1和圖2中所有的正方形都全等,圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是( )
A. B.
C.
D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
【答案】C
【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;
若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;
若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;
若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;
因此乙和丁不可能同時獲獎,選C.
【題型】單選題
【結束】
12
【題目】已知當時,關于
的方程
有唯一實數解,則
值所在的范圍是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com