【題目】下列說法正確的是( )
A. 命題“x∈R,使得”的否定是:“x∈R,
”.
B. “為真命題”是“
為真命題”的必要不充分條件.
C. ,“
”是“
”的必要不充分條件.
D. 命題p:“”,則﹁p是真命題.
【答案】C
【解析】
A.根據特稱命題的否定是全稱命題進行判斷.
B.根據充分條件和必要條件的定義進行判斷.
C. 根據充要條件的定義,可判斷
D.根據三角函數的性質進行判斷.根據不等式的關系結合充分條件和必要條件的定義進行判斷即可.
A.命題“x∈R使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3≥0”,故A錯誤,
B.若p∧q為真命題,則p,q都是真命題,此時p∨q為真命題,即充分性成立,反之當p假q真時,p∨q為真命題,但p∧q為假命題,故“p∧q為真命題”是“p∨q為真命題”的充分不必要條件,故B錯誤,
C. a∈R,“1”“a<0,或a>1”,又“a<0,或a>1”是“a>1”的必要不充分條件,所以“
”是“
”的必要不充分條件,故C正確;
D. ∵sinx+cosxsin(x
)
恒成立,∴p是真命題,則¬p是假命題,故D錯誤,
故選C.
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數據:,
.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數f(x)是奇函數”的充要條件
B. 若p:,
,則
:
,
C. “若,則
”的否命題是“若
,則
”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與
的相關系數
精確到0.01,并判斷
與
的關系是否可用線性回歸方程模型擬合?(規定:
時,可用線性回歸方程模型擬合);
(2)該藥企準備生產藥品的三類不同的劑型
,
,
,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設經過兩次檢測后
,
,
三類劑型合格的種類數為
,求
的數學期望.
附:(1)相關系數
(2),
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一批產品需要進行質量檢驗,檢驗方案是:先從這批產品中任取4件作檢驗,這4件產品中優質品的件數記為.如果
,再從這批產品中任取4件作檢驗,若都為優質品,則這批產品通過檢驗;如果
,再從這批產品中任取1件作檢驗,若為優質品,則這批產品通過檢驗;其他情況下,這批產品都不能通過檢驗.假設這批產品的優質品率為
,即取出的每件產品是優質品的概率都為
,且各件產品是否為優質品相互獨立.
(1)求這批產品通過檢驗的概率;
(2)已知每件產品的檢驗費用為50元,且抽取的每件產品都需要檢驗,對這批產品作質量檢驗所需的費用記為X(單位:元),求的分布列及數學期望(保留一位小數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法錯誤的是( )
A.若樣本的平均數為5,標準差為1,則樣本
的平均數為11,標準差為2
B.身高和體重具有相關關系
C.現有高一學生30名,高二學生40名,高三學生30名,若按分層抽樣從中抽取20名學生,則抽取高三學生6名
D.兩個變量間的線性相關性越強,則相關系數的值越大
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場有獎銷售中,購滿100元商品得1張獎券,多購多得.1 000張獎券為一個開獎單位,設特等獎1個,一等獎10個,二等獎50個.設1張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,求:
(1)P(A),P(B),P(C).
(2)1張獎券的中獎概率.
(3)1張獎券不中特等獎,且不中一等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.對立事件一定是互斥事件,互斥事件不一定是對立事件
B.事件,
同時發生的概率一定比
,
恰有一個發生的概率小
C.若,則事件
與
是對立事件
D.事件,
中至少有一個發生的概率一定比
,
中恰有一個發生的概率大
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com