精英家教網 > 高中數學 > 題目詳情

已知.
(1)已知函數h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數上的最小值;
(3)對一切恒成立,求實數a的取值范圍.

(1).(2). (3

解析試題分析:(1),因為1為極值點,
則滿足,所以. 4分
(2),當,單調遞減,
時,單調遞增.  6分
,t無解;
,即時,;
,即時,上單調遞增,;
所以.    8分
(3),則,設, 10分

,單調遞減,
,單調遞增,所以,
因為對一切,恒成立,所以; 12分 
考點:本題考查了導數的運用
點評:此類問題是在知識的交匯點處命題,將函數、導數、不等式、方程的知識融合在一起進行考查,重點考查了利用導數研究函數的極值與最值等知識.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
若函數處取得極值,試求的值;
在(1)的條件下,當時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為大于零的常數。
(1)若函數內調遞增,求a的取值范圍;
(2)求函數在區間[1,2]上的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數時取得極值.
(1)求、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)求函數上的最小值;
(2)若函數的圖像恰有一個公共點,求實數a的值;
(3)若函數有兩個不同的極值點,且,求實數a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數在定義域內的極值點的個數;
(2)若函數處取得極值,對,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為實數,函數。
①求的單調區間與極值;
②求證:當時,。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
設函數(a>0,b,cÎR),曲線在點P(0,f (0))處的切線方程為
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實數a使得過點(0,2)可作曲線的三條不同切線,若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视