精英家教網 > 高中數學 > 題目詳情

已知函數
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經過原點,求直線的方程及切點坐標.

(1);(2)直線的方程為,切點坐標為

解析試題分析:(1)
在點處的切線的斜率,
切線的方程為;
(2)設切點為,則直線的斜率為,
直線的方程為:
又直線過點,
,
整理,得, ,
,
的斜率直線的方程為,切點坐標為
考點:本題主要考查導數的幾何意義,直線方程的點斜式。
點評:中檔題,曲線的切線斜率,等于切點的導函數值。求切線方程,有兩種情況,一是給定點在曲線上,二是給定點在曲線外。本題包含了上述兩種情況,比較典型。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調區間;(2)求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求證:函數上單調遞增;
(Ⅱ)若函數有三個零點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(1)已知函數h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數上的最小值;
(3)對一切,恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為實數,
(1)求導數;
(2)若,求在[-2,2] 上的最大值和最小值;
(3)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求的單調區間;
(Ⅱ)設函數在點處的切線為,直線軸相交于點.若點的縱坐標恒小于1,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln(1+x)-.
(1)求f(x)的極小值;   (2)若a、b>0,求證:lna-lnb≥1-.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)設函數,且的極值點.
(Ⅰ) 若的極大值點,求的單調區間(用表示);
(Ⅱ) 若恰有兩解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分15分)
已知函數
(Ⅰ)當時,試判斷的單調性并給予證明;
(Ⅱ)若有兩個極值點
(i) 求實數a的取值范圍;
(ii)證明:。 (注:是自然對數的底數)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视