在平面直角坐標系xOy中,已知對于任意實數k,直線(k+1)x+(k-
)y-(3k+
)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+
.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,一個焦點為F(0,),且長軸長與短軸長的比是
∶1.
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B,求證:直線AB的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A,B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內,且到直線l:y=x-
的距離為
-
,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點和定直線
,動點與定點
的距離等于點
到定直線
的距離,記動點
的軌跡為曲線
.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線
交于
、
不同兩點,且線段
是此圓的直徑時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標原點
的直線
與
相交于點
,直線
分別與
相交于點
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率與雙曲線
的離心率互為倒數,直線
與以原點為圓心,以橢圓
的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為
,右焦點為
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設第(2)問中的與
軸交于點
,不同的兩點
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com