【題目】若橢圓:
上有一動點
,
到橢圓
的兩焦點
,
的距離之和等于
,
到直線
的最大距離為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線
與橢圓
交于不同兩點
、
,
(
為坐標原點)且
,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2, ,E為CD的中點,點F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)試確定點F的位置,使得直線EF與平面PDC所成的角和直線EF與平面ABCD所成的角相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系內,已知是以點
為圓心的圓上的一點,折疊該圓兩次使點
分別與圓上不相同的兩點(異于點
)重合,兩次的折痕方程分別為
和
,若圓上存在點
,使得
,其中點
、
,則
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
.
(1)在
處的切線方程;
(2)當時,函數
有兩個極值點,求
的取值范圍;
(3)若在點
處的切線與
軸平行,且函數
在
時,其圖象上每一點處切線的傾斜角均為銳角,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)請指出函數的定義域、周期性和奇偶性;(不必證明)
(2)請以正弦函數的性質為依據,并運用函數的單調性定義證明:
在區間
上單調遞減.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是樣本容量為200的頻率分布直方圖.根據樣本的頻率分布直方圖估計,樣本數落在[6,10]內的頻數為 ,數據落在(2,10)內的概率約為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了弘揚民族文化,某中學舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了60名學生的成績(滿分100分)作為樣本,其中成績不低于80分的學生被評為優秀生,得到成績分布的頻率分布直方圖如圖所示.
(1)若該所中學共有2000名學生,試利用樣本估計全校這次考試中優秀生人數;
(2)(i)試估計這次參加考試的學生的平均成績(同一組數據用該組區間的中點值作代表);
(ii)若在樣本中,利用分層抽樣的方法從成績不低于70分的學生中隨機抽取6人,再從中抽取3人贈送一套國學經典學籍,試求恰好抽中2名優秀生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com