【題目】如圖,多面體中,平面
平面
,
,
四邊形
為平行四邊形.
(1)證明:;
(2)若,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】已知中心在原點,焦點在
軸上,離心率為
的橢圓過點
(1)求橢圓的方程;
(2)設不過原點的直線
與該橢圓交于
兩點,滿足直線
的斜率依次成等比數列,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為F
,點B是橢圓C的短軸的一個端點,ΔOFB的面積為
,橢圓C上的兩點H、G關于原點O對稱,且
、
的等差中項為2
(1)求橢圓的方程;
(2)是否存在過點M(2,1)的直線與橢圓C交于不同的兩點P、Q,且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】貴陽市交管部門于2018年4月對貴陽市長期執行的“兩限”政策進行了調整,調整后貴陽市貴A普客小汽車擁有和外地牌照汽車一樣的駛入一環開四停四的權利,為統計開放政策實施后貴陽市一環內城區的交通流量狀況,市交管部門抽取了某月30天內的日均汽車流量與實際容納量進行對比,比值記為,若該比值不超過1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實現的功能是( )
A.求30天內交通的暢通率B.求30天內交通的擁堵率
C.求30天內交通的暢通天數D.求30天內交通的擁堵天數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E,F分別是棱AA1,AD上的點,且AE=EA1,AFFD.
(1)求證:平面EC1D1⊥平面EFB;
(2)求二面角E﹣FB﹣A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知函數f(x)=,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)為曲線
上的動點,點
在線段
上,且滿足
,求點
的軌跡
的直角坐標方程;
(2)設點的極坐標為
,點
在曲線
上,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓將圓
的圓周分為四等份,且橢圓
的離心率為
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于不同的兩點
,且
的中點為
,線段
的垂直平分線為
,直線
與
軸交于點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com