【題目】已知數列{an}的前n項和為Sn , 且Sn=n(n+1),
(1)求數列{an}的通項公式an
(2)數列{bn}的通項公式bn= ,求數列{bn}的前n項和為Tn .
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數在
上是減函數,求實數
的取值范圍;
(2)當時,分別求函數
的最小值和
的最大值,并證明當
時,
成立;
(3)令,當
時,判斷函數
有幾個不同的零點并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令
,下面說法錯誤的是( )
A.若 與
共線,則
⊙
=0
B. ⊙
=
⊙
C.對任意的λ∈R,有 ⊙
=
⊙
)
D.( ⊙
)2+(
)2=|
|2|
|2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的角平分線所在的直線方程為y=0,點C的坐標為(1,2).
(1)求點A和點B的坐標;
(2)又過點C作直線l與x軸、y軸的正半軸分別交于點M,N,求△MON的面積最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE∥平面ADP;
(2)求直線BE與平面PDB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=lnx,g(x)= x2+mx+
(m<0),直線l與函數f(x)的圖象相切,切點的橫坐標為1,且直線l與函數g(x)的圖象也相切.
(1)求直線l的方程及實數m的值;
(2)若h(x)=f(x)﹣x+3,求函數h(x)的最大值;
(3)當0<b<a時,求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是橢圓
的長軸與短軸的一個端點,
是橢圓的左、右焦點,以
點為圓心、3為半徑的圓與以
點為圓心、1為半徑的圓的交點在橢圓
上,且
.
(1)求橢圓的方程;
(2)設為橢圓
上一點,直線
與
軸交于點
,直線
與
軸交于點
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com