【題目】已知函數.
(1)若函數為
上的奇函數,求實數a的值;
(2)當時,函數
在
為減函數,求實數a的取值范圍;
(3)是否存在實數(
),使得
在閉區間
上的最大值為2,若存在,求出
的值;若不存在,請說明理由.
【答案】(1) (2)
(3)
【解析】
(1)利用函數是奇函數定義,列出關系式,即可求出a的值;
(2)推出二次函數的性質,列出不等式求解即可;
(3)化簡函數為分段函數,通過討論a的范圍,列出關系式求解即可.
解:(1)因為奇函數f(x)定義域為R,
所以f(﹣x)=﹣f(x)對任意x∈R恒成立,
即|﹣x|(﹣x﹣a)=﹣|x|(x﹣a),即|x|(﹣x﹣a+x﹣a)=0,
即2a|x|=0對任意x∈R恒成立,
所以a=0.
因為
,所以
,
顯然二次函數的對稱軸為,由于函數
在
上單調遞減,
所以,即
。
∵a<0,,
∴f(﹣1)=﹣1﹣a≤2,∴﹣a≤3(先用特殊值約束范圍)
∴,f(x)在(0,+∞)上遞增,
∴f(x)必在區間[﹣1,0]上取最大值2.
當,即a<﹣2時,則f(﹣1)=2,a=﹣3,成立
當,即0>a≥﹣2時,
,則
(舍)
綜上,a=﹣3.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,離心率
,
為橢圓
上的任意一點(不含長軸端點),且
面積的最大值為1.
(1)求橢圓的方程;
(2)已知直線與橢圓
交于不同的兩點
,且線段
的中點不在圓
內,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用.出現這樣的統計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統的文明古國、禮儀之邦的地位不相符.某小區為了提高小區內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區內看書人員進行年齡調查,隨機抽取了一天 名讀書者進行調查,將他們的年齡分成6段:
,
,
,
,
,
后得到如圖所示的頻率分布直方圖.問:
(1)估計在40名讀書者中年齡分布在 的人數;
(2)求40名讀書者年齡的平均數和中位數;
(3)若從年齡在 的讀書者中任取2名,求這兩名讀書者年齡在
的人數
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若同時滿足以下條件:
①在D上單調遞減或單調遞增;
②存在區間,使
在
上的值域是
,那么稱
為閉函數.
(1)求閉函數符合條件②的區間
;
(2)判斷函數是不是閉函數?若是請找出區間
;若不是請說明理由;
(3)若是閉函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若關于x的不等式xex﹣2ax+a<0的非空解集中無整數解,則實數a的取值范圍是( )
A.[ ,
)
B.[ ,
)
C.[ ,e]
D.[ ,e]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+2x-6。
(1)證明:函數f(x)在其定義域上是增函數;
(2)證明:函數f(x)有且只有一個零點;
(3)求這個零點所在的一個區間,使這個區間的長度不超過。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣2ax+1+b(a>0)在區間[2,3]上有最大值4和最小值1.
(Ⅰ)求實數a,b的值;
(Ⅱ)設函數g(x)=,若不等式g(2x)﹣k2x≤0在x∈[﹣1,1]上恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區間(1,2)上單調遞增,求a的取值范圍;
(Ⅲ)討論函數g(x)=f'(x)﹣x的零點個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com