【題目】假設國家收購某種農產品的價格是1.2元/kg,其中征稅標準為每100元征8元(即稅率為8個百分點,8%),計劃可收購kg.為了減輕農民負擔,決定稅率降低
個百分點,預計收購可增加
個百分點.
(1)寫出稅收(元)與
的函數關系;
(2)要使此項稅收在稅率調節后不低于原計劃的78%,確定的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知球是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)
的外接球,
,
,點
在線段
上,且
,過點
作球
的截面,則所得截面圓面積的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了獲得更大的收益,每年要投入一定的資金用于廣告促銷,經調查,每年投入廣告費t百萬元,可增加銷售額約為百萬元.
(Ⅰ)若該公司將一年的廣告費控制在4百萬元之內,則應投入多少廣告費,才能使該公司由此增加的收益最大?
(Ⅱ)現該公司準備共投入5百萬元,分別用于廣告促銷和技術改造,經預測,每投入技術改造費百萬元,可增加的銷售額約為
百萬元,請設計一個資金分配方案,使該公司由此增加的收益最大.
(注:收益=銷售額-投入,這里除了廣告費和技術改造費,不考慮其他的投入)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
是兩條不同的直線,
,
,
是三個不同的平面,給出下列四個命題:(1)若
,
,則
;(2)若
,
,
,則
;(3)若
,
,則
;(4)若
,
,則
,其中正確命題的序號是( )
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
(
),左、右焦點分別是
、
且
,以
為圓心,3為半徑的圓與以
為圓心,1為半徑的圓相交于橢圓
上的點
(1)求橢圓的方程;
(2)設橢圓:
,
為橢圓
上任意一點,過點
的直線
交橢圓
于
兩點,射線
交橢圓
于點
①求的值;
②令,求
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設n為正整數,集合A=.對于集合A中的任意元素
和
,記
M()=
.
(Ⅰ)當n=3時,若,
,求M(
)和M(
)的值;
(Ⅱ)當n=4時,設B是A的子集,且滿足:對于B中的任意元素,當
相同時,M(
)是奇數;當
不同時,M(
)是偶數.求集合B中元素個數的最大值;
(Ⅲ)給定不小于2的n,設B是A的子集,且滿足:對于B中的任意兩個不同的元素,
M()=0.寫出一個集合B,使其元素個數最多,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點,且點Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com