【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點,且點Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
【答案】(1)6,2
(2)最大值為2+
,最小值為2-
【解析】
試題(1)求圓上的點到定點的距離最值,首先求圓心到直線的距離,再此基礎上加減半徑得到距離的最大值和最小值;(2)看作兩點
連線的斜率,結合圖形可知斜率的最值為直線與圓相切時的切線斜率
試題解析:(1)由C:x2+y2-4x-14y+45=0可得(x-2)2+(y-7)2=8,
∴圓心C的坐標為(2,7),半徑r=2.
又|QC|==4
.∴|MQ|max=4
+2
=6
,
|MQ|min=4-2
=2
.
(2)可知表示直線MQ的斜率,設直線MQ的方程為y-3=k(x+2),
即kx-y+2k+3=0,則=k.由直線MQ與圓C有交點,
所以≤2
.可得2-
≤k≤2+
,
所以的最大值為2+
,最小值為2-
.
科目:高中數學 來源: 題型:
【題目】假設國家收購某種農產品的價格是1.2元/kg,其中征稅標準為每100元征8元(即稅率為8個百分點,8%),計劃可收購kg.為了減輕農民負擔,決定稅率降低
個百分點,預計收購可增加
個百分點.
(1)寫出稅收(元)與
的函數關系;
(2)要使此項稅收在稅率調節后不低于原計劃的78%,確定的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題:實數
滿足不等式
,命題
:函數
無極值點.
(1)若“”為假命題,“
”為真命題,求實數
的取值范圍;
(2)已知“”為真命題,并記為
,且
:
,若
是
的必要不充分條件,求正整數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點E、F、M分別為C1D1,A1D1,B1C1的中點,過點M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,點
在橢圓上.
()求橢圓
的方程.
()設動直線
與橢圓
有且僅有一個公共點,判斷是否存在以原點
為圓心的圓,滿足此圓與
相交于兩點
,
(兩點均不在坐標軸上),且使得直線
、
的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在新冠肺炎疫情的影響下,南充高中響應“停課不停教,停課不停學”的號召進行線上教學,高二年級的甲乙兩個班中,需根據某次數學測試成績選出某班的5名學生參加數學競賽決賽,已知這次測試他們取得的成績的莖葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數是86.
(1)求出x,y的值,且分別求甲乙兩個班中5名學生成績的方差,并根據結
果,你認為應該選派哪一個班的學生參加決賽?
(2)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】幾位大學生響應國家的創業號召,開發了一款應用軟件.為激發大家學習數學的興趣,他們推出了“解數學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數學問題的答案:已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數N:N>100且該數列的前N項和為2的整數冪.那么該款軟件的激活碼是
A. 440B. 330
C. 220D. 110
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com