精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數方程為:為參數).

1)求曲線的直角坐標方程;

2)設曲線,交于點,,已知點,求.

【答案】(1)曲線的直角坐標方程為:,曲線的直角坐標方程為:(2)

【解析】

1)根據極坐標和直角坐標、參數方程的互化公式得結果;

2)將直線的參數方程代入曲線的直角坐標方程,整理可得t2-(4t+160,利用參數的幾何意義及韋達定理可得結論;

1)曲線的極坐標方程可以化為:,

所以曲線的直角坐標方程為:,

曲線的直角坐標方程為:.

2)曲線的參數方程可化為:為參數),

的參數方程代入曲線的直角坐標方程得到:,

整理得:,判別式,

不妨設的參數分別為,,則,,

又點,所以,所以,

又因為,,所以,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓與雙曲線有相同的焦點,且橢圓與雙曲線交于一點

1)求的值;

2)若雙曲線上一點Q到左焦點的距離為3,求它到雙曲線右準線的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題:關于的不等式無解;命題:指數函數上的增函數.

(1)若命題為真命題,求實數的取值范圍;

(2)若滿足為假命題且為真命題的實數取值范圍是集合,集合,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中裝有9只球,其中標有數字1,2,3,4的小球各2個,標數字5的小球有1個.從袋中任取3個小球,每個小球被取出的可能性都相等,用表示取出的3個小球上的最大數字.

(1)求取出的3個小球上的數字互不相同的概率;

(2)求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】影響消費水平的原因很多,其中重要的一項是工資收入.研究這兩個變量的關系的一個方法是通過隨機抽樣的方法,在一定范圍內收集被調查者的工資收入和他們的消費狀況.下面的數據是某機構收集的某一年內上海、江蘇、浙江、安徽、福建五個地區的職工平均工資與城鎮居民消費水平(單位:萬元).

地區

上海

江蘇

浙江

安徽

福建

職工平均工資

9.8

6.9

6.4

6.2

5.6

城鎮居民消費水平

6.6

4.6

4.4

3.9

3.8

(1)利用江蘇、浙江、安徽三個地區的職工平均工資和他們的消費水平,求出線性回歸方程,其中,;

(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過1萬,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結果保留兩位小數)

(參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐A-BCDE中,平面BCDE,底面BCDE為直角梯形,,,FAC上一點,且.

1)求證:平面ADE;

2)求異面直線ABDE所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若存在實數,使得,求正實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100110),[110,120),[120,130)[130,140),[140150]分別加以統計,得到如圖所示的頻率分布直方圖.

1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規定分數不小于130分的學生為數學尖子生,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為數學尖子生與性別有關?

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视