【題目】一個口袋中有3個紅球4個白球,從中取出2個球.下面幾個命題:
(1)如果是不放回地抽取,那么取出1個紅球,1個白球的概率是
(2)如果是不放回地抽取,那么在至少取出一個紅球的條件下,第2次取出紅球的概率是
(3)如果是有放回地抽取,那么取出1個紅球1個白球的概率是
(4)如果是有放回地抽取,那么第2次取到紅球的概率和第1次取到紅球的概率相同.
其中正確的命題是__________.
【答案】(2)(4)
【解析】
算出(1)和(3)中對應事件的概率即可判斷其正確與否,(2)當中是條件概率,先算出至少取出一個紅球的概率和至少取出一個紅球且第2次取出紅球的概率即可,(4)是正確的.
如果是不放回地抽取,那么取出1個紅球,1個白球的概率是
,故(1)錯誤
如果是不放回地抽取,至少取出一個紅球的概率是
至少取出一個紅球且第2次取出紅球的概率是
所以如果是不放回地抽取,那么在至少取出一個紅球的條件下,
第2次取出紅球的概率是,故(2)正確
如果是有放回地抽取,那么取出1個紅球1個白球的概率是
,故(3)錯誤
如果是有放回地抽取,那么第2次取到紅球的概率和第1次取到紅球的概率相同
都為,故(4)正確
故答案為:(2)(4)
科目:高中數學 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M的軌跡C的方程;
(2)設N(0,2),過點P(-1,-2)作直線l,交曲線C于不同于N的兩點A,B,直線NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現從雙方的馬匹中隨機各選一匹進行一場比賽,若有優勢的馬一定獲勝,則齊王的馬獲勝的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了推廣電子支付,某公交公司推出支付寶和微信掃碼支付乘車優惠活動,活動期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,現用表示活動推出第
天使用掃碼支付的人次(單位:十人次),統計數據如表1所示:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 12 | 23 | 34 | 65 | 106 | 195 |
表1
根據以上數據繪制了散點圖.
(1)根據散點圖判斷,在活動期內,與
(
,
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(1)的判斷結果及表1中的數據建立關于
的回歸方程,并預測活動推出第8天使用掃碼支付的人次;
(3)優惠活動結束后,車隊對乘客的支付方式進行統計,結果如下
支付方式 | 現金 | 乘車卡 | 掃碼 |
比列 | 10% | 54% | 36% |
車隊為緩解周邊居民出行壓力,以90萬元的單價購進了一批新車,根據以往的經驗可知每輛車每個月的運營成本約為0.978萬元.已知該線路公交車票價為2元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受8折優惠,掃碼支付的乘客隨機優惠,根據統計結果得知,使用掃碼支付的乘客中有的概率享受6折優惠,有
的概率享受7折優惠,有
的概率享受8折優惠,有
的概率享受9折優惠.預計該車隊每輛車每個月有1.5萬人次乘車,根據所給數據,以事件發生的頻率作為相應事件發生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要
年才能開始盈利,求
的值.
參考數據:
63 | 1.55 | 2561 | 50.40 | 3.55 |
其中,
.
參考公式:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三年級有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人進行問卷調查.設其中某項問題的選擇只有“同意”,“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調查人答卷情況的部分信息.
同意 | 不同意 | 合計 | |
教師 | 1 | ||
女生 | 4 | ||
男生 | 2 |
(1)請完成此統計表;
(2)試估計高三年級學生“同意”的人數;
(3)從被調查的女生中選取2人進行訪談,求選到的兩名學生中,恰有一人“同意”、一人“不同意”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為
,該橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(Ⅱ)如圖,若斜率為的直線
與
軸,橢圓
順次交于
點在橢圓左頂點的左側)且
,求證:直線
過定點;并求出斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com