【題目】如圖,已知四棱錐的底面為直角梯形,平面
平面
,
,
,且
,
,
,
的中點分別是
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求點到平面
的距離.
科目:高中數學 來源: 題型:
【題目】已知點,點
在
軸負半軸上,以
為邊做菱形
,且菱形
對角線的交點在
軸上,設點
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點,其中
,作曲線
的切線,設切點為
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C所對應的分別為a,b,c,且(a+b)(sinA﹣sinB)=(c﹣b)sinC,若a=2,則△ABC的面積的最大值是( )
A.1B.C.2D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為評估設備生產某種零件的性能,從設備
生產該零件的流水線上隨機抽取100個零件為樣本,測量其直徑后,整理得到下表:
經計算,樣本的平均值,標準差
,以頻率值作為概率的估計值.
(I)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據以下不等式進行判定(
表示相應事件的概率):
①;
②;
③.
判定規則為:若同時滿足上述三個式子,則設備等級為甲;若僅滿足其中兩個,則等級為乙,若僅滿足其中一個,則等級為丙;若全部都不滿足,則等級為了.試判斷設備的性能等級.
(Ⅱ)將直徑尺寸在之外的零件認定為是“次品”.
①從設備的生產流水線上隨機抽取2個零件,求其中次品個數
的數學期望
;
②從樣本中隨意抽取2個零件,求其中次品個數的數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研小組為了研究一種治療新冠肺炎患者的新藥的效果,選50名患者服藥一段時間后,記錄了這些患者的生理指標和
的數據,并統計得到如下的
列聯表(不完整):
合計 | |||
12 | 36 | ||
7 | |||
合計 |
其中在生理指標的人中,設
組為生理指標
的人,
組為生理指標
的人,他們服用這種藥物后的康復時間(單位:天)記錄如下:
組:10,11,12,13,14,15,16
組:12,13,15,16,17,14,25
(Ⅰ)填寫上表,并判斷是否有95%的把握認為患者的兩項生理指標和
有關系;
(Ⅱ)從,
兩組隨機各選1人,
組選出的人記為甲,
組選出的人記為乙,求甲的康復時間比乙的康復時間長的概率.
附:,其中
.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com