【題目】已知點,點
在
軸負半軸上,以
為邊做菱形
,且菱形
對角線的交點在
軸上,設點
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點,其中
,作曲線
的切線,設切點為
,求
面積的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,其左、右兩個焦點分別為
,
,短軸的一個端點為
,且
.
(1)求的平分線所在的直線方程;
(2)設直線:
與橢圓交于不同的兩點
,
.且
為坐標原點,若
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區別籌算與珠算,它由明代數學家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計算,將被乘數89計入上行,乘數65計入右行.然后以乘數65的每位數字乘被乘數89的每位數字,將結果計入相應的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進一,如圖,即得5785.類比此法畫出
的表格,若從表內(表周邊數據不算在內)任取一數,則恰取到奇數的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數;
(Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取
人參加學校座談交流,那么從得分在區間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設
表示得分在區間
中參加全市座談交流的人數,求
的分布列及數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知點
,
,動點
滿足直線
與
的斜率之積為
.記
的軌跡為曲線
.以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求和
的直角坐標方程;
(2)求上的點到
距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設觀賞視角
(1)若問:觀察者離墻多遠時,視角
最大?
(2)若當
變化時,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com