【題目】已知函數對任意實數
,
恒有
,且當
,
,又
.
(1)判斷的奇偶性;
(2)求在區間
上的最大值;
(3)是否存在實數,使得不等式
對一切
都成立?若存在求出
;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現有10件產品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機選取1件產品,求能夠通過檢測的概率;
(Ⅱ)隨機選取3件產品,其中一等品的件數記為,求
的分布列;
(Ⅲ)隨機選取3件產品,求這三件產品都不能通過檢測的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年的西部決賽勇士和火箭共進行了七場比賽,經歷了殘酷的“搶七”比賽,兩隊的當家球星庫里和杜蘭特七場比賽的每場比賽的得分如下表:
第一場 | 第二場 | 第三場 | 第四場 | 第五場 | 第六場 | 第七場 | |
庫里 | 26 | 28 | 24 | 22 | 31 | 29 | 36 |
杜蘭特 | 26 | 29 | 33 | 26 | 40 | 29 | 27 |
(1)繪制兩人得分的莖葉圖;
(2)分析并比較兩位球星的七場比賽的平均得分及得分的穩定程度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據該圖,以下結論中一定正確的是( 。
A.華為的全年銷量最大B.蘋果第二季度的銷量大于第三季度的銷量
C.華為銷量最大的是第四季度D.三星銷量最小的是第四季度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發芽多少之間的關系,現在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發芽數,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發芽數y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發芽的種子數分別為,求事件“
均不小于25”的概率;
(2) 若由線性回歸方程得到的估計數據與4月份所選5天的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的. 請根據4月7日,4月15日與4月21日這三天的數據,求出關于
的線性回歸方程
,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業場景可以實現手機支付.為了解各年齡層的人使用手機支付的情況,隨機調查了50個人,并把調查結果制成下表:
(1)把年齡在稱為中青年,年齡在
稱為中老年,請根據上表完成
列聯表,是否有
以上的把握判斷使用手機支付與年齡(中青年、中老年)有關聯?
(2)若分別從年齡在、
的被調查者中各隨機選取2人進行調查,記選中的4人中使用手機支付的人數記為
,求
.
附:可能用到的公式:,其中
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系,將曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的
,得到曲線
,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,
的極坐標方程為
.
(Ⅰ)求曲線的參數方程;
(Ⅱ)過原點且關于
軸對稱的兩條直線
與
分別交曲線
于
、
和
、
,且點
在第一象限,當四邊形
的周長最大時,求直線
的普通方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com