已知橢圓(
),圓
:
,過橢圓上任一與頂點不重合的點
引圓
的兩條切線,切點分別為
,直線
與
軸、
軸分別交于點
,則
解析考點:橢圓的簡單性質。
分析:設A(xA,yA ),B (xB,yB ),則可得切線PA、PB的方程,即可得到A,B 是xP?x+yP?y=b2 和圓x2+y2=b2 的交點,求出點M(b2/ xP,0),N(0,b2/ yP),從而得到的值。
解答:
設A(xA,yA ),B (xB,yB ),則切線PA、PB的方程分別為 xA?x+yA?y=1,
xB?x+yB?y=b2.由于點P 是切線PA、PB的交點,
故點P的坐標滿足切線PA的方程,也滿足切線PAB的方程.
故A,B 是xP?x+yP?y=b2 和圓x2+y2=b2 的交點,
故點M(b2/ xP,0),N(0,b2/ yP),
又xP2 / a2+ yP2/ b2=1, = a2yP2/ b4+ a2xP2/ b4=(xP2 / a2+ yP2/ b2)?a2/ b2= a2/ b2。
∴
= a2yP2/ b4+ a2xP2/ b4=(xP2 / a2+ yP2/ b2)?a2/ b2= a2/ b2。
點評:本題考查橢圓的標準方程,以及簡單性質的應用,得到故A,B 是xP?x+yP?y=b2 和圓x2+y2=b2 的交點,是解題的難點和關鍵。
科目:高中數學 來源: 題型:填空題
若點P在曲線C1:上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則| PQ |-| PR | 的最大值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com