精英家教網 > 高中數學 > 題目詳情

(12分)已知是定義在(0,+∞)上的增函數,且滿足 , 
(1)求證:=1    (2) 求不等式的解集.

(1)見解析;(2){x/3<x<6}。

解析試題分析:(1)由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0,進一步得到.
(2)不等式化為f(x)>f(x-3)+1
∵f(2)=1 
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數
解得{x/3<x<6}
(1)【證明】 由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0 3分
 ∴            。。。6分
(2)【解】 不等式化為f(x)>f(x-3)+1
∵f(2)=1 
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數
解得{x/3<x<6}                  。。。。12分
考點:本題主要是考查抽象函數單調性的運用。
點評:解決該試題的關鍵是利用得到f(2)=1,進而變形得到不等式的解集。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,
(1)作出的圖像;
(2)求滿足的取值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題13分)已知函數。
(Ⅰ)若,試判斷并證明的單調性;
(Ⅱ)若函數上單調,且存在使成立,求的取值范圍;
(Ⅲ)當時,求函數的最大值的表達式。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)已知函數的一系列對應值如下表:

















(1)根據表格提供的數據求函數的解析式;
(2)根據(1)的結果,若函數周期為,求在區間上的最大、最小值及對應的的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(10分)設是定義在上的單調增函數,滿足,
,
求(1);
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

本題12分)
已知函數.
(1)求的定義域;
(2)在函數的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當,b滿足什么條件時,上恒取正值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在上的奇函數,當時,
(1)求上的解析式;
(2)判斷上的單調性,并給予證明;
(3)當時,關于的方程有解,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數
(1)若定義域內存在,使不等式成立,求實數的最小值;
(2)若函數在區間上恰有兩個不同的零點,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)設函數),
(Ⅰ)令,討論的單調性;
(Ⅱ)關于的不等式的解集中的整數恰有3個,求實數的取值范圍;
(Ⅲ)對于函數定義域上的任意實數,若存在常數,使得都成立,則稱直線為函數的“分界線”.設,,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视