【題目】(已知函數f(x)= ,則y=f(x)的圖象大致為( )
A.
B.
C.
D.
【答案】A
【解析】解:令g(x)=x﹣lnx﹣1,則 ,
由g'(x)>0,得x>1,即函數g(x)在(1,+∞)上單調遞增,
由g'(x)<0得0<x<1,即函數g(x)在(0,1)上單調遞減,
所以當x=1時,函數g(x)有最小值,g(x)min=g(0)=0,
于是對任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,
因函數g(x)在(0,1)上單調遞減,則函數f(x)在(0,1)上遞增,故排除C,
故選A.
【考點精析】認真審題,首先需要了解函數的圖象(函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值),還要掌握利用導數研究函數的單調性(一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業額的影響,隨機記錄了該店1月份中5天的日營業額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數據,如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y關于x的回歸方程 ;
(2)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業額. (附:回歸方程 中,
=
=
,
=
﹣
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設復數z=2m+(4-m2)i,當實數m取何值時,復數z對應的點:
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4),現從袋中任取一球,X表示所取球的標號.
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,試求a,b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=log2x+ax+b(a>0),若存在實數b,使得對任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,則t的最小值是( )
A.2
B.1
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l過定點P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點.若線段AB的中點為P,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設F為雙曲線 ﹣
=1(a>b>0)的右焦點,過點F的直線分別交兩條漸近線于A,B兩點,OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數f(x)= (a>0且a≠1).
(Ⅰ)求函數f(x)的定義域;
(Ⅱ)判斷函數f(x)的奇偶性,并加以證明;
(Ⅲ)設a=,解不等式f(x)>0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com