【題目】已知二次函數和
.
(1)為偶函數,試判斷
的奇偶性;
(2)若方程有兩個不相等的實根,當
時判斷
在
上的單調性;
(3)當時,問是否存在x的值,使滿足
且
的任意實數a,不等式
恒成立?并說明理由.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線,直線l的參數方程為:
(t為參數),直線l與曲線C分別交于
兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=
.
(1)試將污水凈化管道的長度L表示為的函數,并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E的長軸長與焦距比為2:1,左焦點F(﹣2,0),一定點為P(﹣8,0).
(1)求橢圓E的標準方程;
(2)過P的直線與橢圓交于P1、P2兩點,設直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0.
(3)求△P1P2F面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農場規劃將果樹種在正方形的場地內.為了保護果樹不被風吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規劃種植果樹的列數(n),果樹數量及松樹數量的規律:
(1)按此規律,n = 5時果樹數量及松樹數量分別為多少;并寫出果樹數量,及松樹數量
關于n的表達式
(2)定義:
為
增加的速度;現農場想擴大種植面積,問:哪種樹增加的速度會更快?并說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體中,AD=2,AB=AE=1,M為矩形AEHD內的一點,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值為
那么點M到平面EFGH的距離是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,焦距為
,斜率為k的直線l與橢圓M有兩個不同的交點A、B.
(1)求橢圓M的方程;
(2)設P(﹣2,0),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D,若C、D與點共線,求斜率k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,過點
.
(1)求橢圓的標準方程;
(2)設橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于A,B兩點,以線段AP為直徑的圓與直線
的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com