精英家教網 > 高中數學 > 題目詳情

(本小題滿分分)
已知是偶函數.
(Ⅰ)求實常數的值,并給出函數的單調區間(不要求證明);
(Ⅱ)為實常數,解關于的不等式:


(Ⅰ)的遞增區間為,遞減區間為
(Ⅱ)時,不等式解集為; 
時,不等式解集為
時,不等式解集為

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,二次函數)的圖象與反比例函數圖象相交于點,已知點的坐標為,點在第三象限內,且的面積為為坐標原點)

① 求實數的值;
② 求二次函數)的解析式;
③ 設拋物線與軸的另一個交點為點為線段

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題8分)經過調查發現,某種新產品在投放市場的30天中,前20天其價格直線上升,后10天價格呈直線下降趨勢。現抽取其中4天的價格如下表所示:

時間
第4天
第12天
第20天
第28天
價格
(千元)
34
42
50
34
 
(1)寫出價格關于時間的函數表達式(表示投放市場的第天)
(2)若銷售量與時間的函數關系式為,問該產品投放市場第幾天,日銷售額最高?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數 (∈R).
(Ⅰ)試給出的一個值,并畫出此時函數的圖象;
(Ⅱ)若函數 f (x) 在上具有單調性,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設二次函數的圖像過原點,,的導函數為,且,
(1)求函數,的解析式;
(2)求的極小值;
(3)是否存在實常數,使得若存在,求出的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
設函數
(1)求函數的單調區間、極值;
(2)若當時,恒有,試確定的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,某小區準備在一直角圍墻ABC內的空地上植出一塊“綠地ABD”,其中AB長為定值a,BD長可根據需要進行調節(BC足夠長),F規劃在ABD的內接正方形BGEF內種花,其余地方種草,且把種草的面積與種花的面積的比值稱為“草花比y”

(1)設,將y表示成的函數關系式。
(2)當BE為多長時,y有最小值?最小值為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)設函數的定義域為A, 函數(其中)的定義域為B.   
(1) 求集合A和B; 
(2) 設全集,當a=0時,求;
(3) 若, 求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數是定義在上的偶函數,當時,
(1)求的解析式;  
(2)討論函數的單調性,并求的值域。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视