精英家教網 > 高中數學 > 題目詳情

已知函數.
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調函數,求的取值范圍.(參考數據

(1)①,②;(2)

解析試題分析:(1)①根據處取得極值,求導將帶入到導函數中,聯立方程組求出的值;②存在性恒成立問題,,只需,進入通過求導求出的極值,最值.(2)當的未知時,要根據中分子是二次函數形式按進行討論.
試題解析:(1)定義域為.
,
因為處取和極值,故,
,解得.
②由題意:存在,使得不等式成立,則只需
,令,令,
所以上單調遞減,上單調遞增,上單調遞減
所以處取得極小值,
而最大值需要比較的大小,
,
,
比較與4的大小,而,所以

所以
所以.
(2)當 時,
①當時,上單調遞增;
②當時,∵ ,則上單調遞增;
③當時,設,只需,從而得,此時上單調遞減;
綜上可得,.
考點:1.利用導數求函數的極值、最值;2.函數恒成立問題;3.利用單調性求參數范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求函數的單調區間;
(Ⅱ)當時,不等式恒成立,求實數的取值范圍.
(Ⅲ)求證:,e是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實數,使得對任意?若存在,求的所有值;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數 (為常數)
(Ⅰ)=2時,求的單調區間;
(Ⅱ)當時,,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,(1)若,求函數的極值;
(2)若函數上單調遞減,求實數的取值范圍;
(3)在函數的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中是常數且.
(1)當時,在區間上單調遞增,求的取值范圍;
(2)當時,討論的單調性;
(3)設是正整數,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ) 若函數處的切線方程為,求實數的值.
(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設l為曲線C:在點(1,0)處的切線.
(I)求l的方程;
(II)證明:除切點(1,0)之外,曲線C在直線l的下方

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视