【題目】如圖,在四棱錐中,底面
是正方形,且
,平面
平面
,
,點
為線段
的中點,點
是線段
上的一個動點.
(Ⅰ)求證:平面
平面
;
(Ⅱ)設二面角的平面角為
,試判斷在線段
上是否存在這樣的點
,使得
,若存在,求出
的值;若不存在,請說明理由.
【答案】(Ⅰ)見證明;(Ⅱ)
【解析】
(Ⅰ)根據面面垂直的判定定理即可證明結論成立;
(Ⅱ)先證明,
,
兩兩垂直,再以
為原點,以
,
,
所在直線分別為
軸,建立空間直角坐標系,設
,用
表示出平面
的法向量,進而表示出
,由
,即可得出結果.
解:(Ⅰ) 四邊形
是正方形,∴
.
∵平面
平面
平面
平面
,∴
平面
.
∵平面
,∴
.
∵,點
為線段
的中點,∴
.
又∵,∴
平面
.
又∵平面
,∴平面
平面
.
(Ⅱ)由(Ⅰ)知平面
,∵
,∴
平面
.
在平面內過
作
交
于點
,
∴,故
,
,
兩兩垂直,以
為原點,
以,
,
所在直線分別為
軸,建立如圖所示空間直角坐標系
.
因為,
,∴
.
∵平面
, 則
,
,
又為
的中點,
,
假設在線段上存在這樣的點
,使得
,設
,
,
,
設平面的法向量為
, 則
∴,令
,則
,則
平面
,
平面
的一個法向量
,
,則
∴.
,解得
,∴
科目:高中數學 來源: 題型:
【題目】十八屆五中全會首次提出了綠色發展理念,將綠色發展作為“十三五”乃至更長時期經濟社會發展的一個重要理念.某地區踐行“綠水青山就是金山銀山”的綠色發展理念,2015年初至2019年初,該地區綠化面積y(單位:平方公里)的數據如下表:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號x | 1 | 2 | 3 | 4 | 5 |
綠化面積y | 2.8 | 3.5 | 4.3 | 4.7 | 5.2 |
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程;
(2)利用(1)中的回歸方程,預測該地區2025年初的綠化面積.
(參考公式:線性回歸方程:,
,
為數據平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業務量統計圖,圖2是該省2018年1~4月快遞業務收入統計圖,下列對統計圖理解錯誤的是( )
A. 2018年1~4月的業務量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業務量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業務量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業務收入同比增長率逐月增長
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某購物網站對在7座城市的線下體驗店的廣告費指出萬元和銷售額
萬元的數據統計如下表:
城市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合y與x關系,求y關于x的線性回歸方程.
(2)若用對數函數回歸模型擬合y與x的關系,可得回歸方程,經計算對數函數回歸模型的相關指數約為0.95,請說明選擇哪個回歸模型更合適,并用此模型預測A城市的廣告費用支出8萬元時的銷售額.
參考數據:,
,
,
,
,
.
參考公式:,
相關指數:(注意:
與
公式中的相似之處)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年1月6日北京時間上午11時30分,朝鮮中央電視臺宣布“成功進行了氫彈試驗”,再次震動世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某QQ聊天群有300名網友,烏魯木齊市某微信群有200名網友,為了解不同地區我國公民對“氫彈試驗”事件的關注程度,現采用分層抽樣的方法,從中抽取了100名網友,先分別統計了他們在某時段發表的信息條數,再將兩地網友發表的信息條數分成5組:,
,
,
,
,分別加以統計,得到如圖所示的頻率分布直方圖.
(1)求丹東市網友的平均留言條數(保留整數);
(2)為了進一步開展調查,從樣本中留言條數超過80條的網友中隨機抽取2人,求至少抽到一名烏魯木齊市網友的概率;
(3)規定“留言條數”不少于70條為“強烈關注”.
①請你根據已知條件完成下列2×2的列聯表:
強烈關注 | 非強烈關注 | 合計 | |
丹東市 | |||
烏魯木齊市 | |||
合計 |
②判斷是否有90%的把握認為“強烈關注”與網友所在的地區有關?
附:臨界值表及參考公式:
,
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設分別是橢圓
的左、右焦點.
(1)若是該橢圓上的一個動點,求
的最大值和最小值;
(2)設過定點的直線
與橢圓交于不同的兩點
,且
為銳角(其中
為坐標原點),求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形
為邊長為
的正方形,△ABE和△BCF均為正三角形,在三棱錐
中:
(I)證明:平面
平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點在棱
上,滿足
,
,點
在棱
上,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標原點),求S的最小值并求此時直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com