【題目】(本小題滿分12分)已知函數.
(Ⅰ)當時,求曲線
在點
處的切線方程;
(Ⅱ)求函數的極值.
【答案】(Ⅰ);(Ⅱ)當
時,函數
無極值.當
時,函數
在
處取得極小值
,無極大值.
【解析】
試題分析:(Ⅰ)先求a=2時的導函數,然后求出x=1時的導函數即該點處的切線斜率,然后由點斜式求出切線方程.(Ⅱ)求出導函數,因為含有參數a,所以結合導函數的零點與定義域區間端點的位置關系進行分類討論,從而得出函數的單調性,并由極值點的定義判斷出函數的極值.
試題解析:函數的定義域為
,
,
(Ⅰ)當時,
,
,
∴,
,
∴在點
處的切線方程為
,
即
(Ⅱ)由,
可知:
①當時,
,函數
為
上的增函數,函數
無極值;②當
時,由
,解得
;
∵時,
,
時,
∴在
處取得極小值,且極小值為
,無極大值.
綜上:當時,函數
無極值.
當時,函數
在
處取得極小值
,無極大值.
科目:高中數學 來源: 題型:
【題目】已知雙曲線C過點A(﹣ ,1),且與x2﹣3y2=1有相同的漸近線.
(1)求雙曲線C的標準方程;
(2)過雙曲線C的一個焦點作傾斜角為45°的直線l與雙曲線交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為增強市民的節能環保意識,鄭州市面向全市征召義務宣傳志愿者. 從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區是: .
(Ⅰ)求圖中的值,并根據頻率分布直方圖估計這500名志愿者中年齡在
歲的人數;
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人. 記這3名志愿者中“年齡低于35歲”的人數為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直四棱柱中,四邊形
為梯形,
,且
.過
三點的平面記為
,
與
的交點為
.
(I)證明: 為
的中點;
(II)求此四棱柱被平面所分成上下兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論正確的是( )
A.各個面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個棱錐和一個棱臺
C.棱錐的側棱長與底面多邊形的邊長相等,則該棱錐可能是正六棱錐
D.圓錐的頂點與底面圓周上的任意一點的連線都是母線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點(1, )是函數f(x)=
ax(a>0,a≠1)圖象上一點,等比數列{an}的前n項和為c﹣f(n).數列{bn}(bn>0)的首項為2c,前n項和滿足
=
+1(n≥2). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{ }的前n項和為Tn , 問使Tn>
的最小正整數n是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數f(x)=lg(2x+a)的定義域為集合C,滿足AC,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是y=f(x)的導函數的圖象,現有四種說法: 1)f(x)在(﹣2,1)上是增函數;
2)x=﹣1是f(x)的極小值點;
3)f(x)在(﹣1,2)上是增函數;
4)x=2是f(x)的極小值點;
以上說法正確的序號是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com