【題目】如圖,矩形中,
,
,
為
的中點,現將
與
折起,使得平面
及平面
都與平面
垂直.
(1)求證:平面
;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)過點作
于
,過點
作
于
,連接
,利用面面垂直的性質定理證明
平面
,
平面
,可得出
,并證明出
,可證明出四邊形
為平行四邊形,于是有
,再利用直線與平面平行的判定定理可證明出
平面
;
(2)以為原點,
為
軸,
為
軸,建立空間直角坐標系
,利用空間向量法可計算出二面角
的余弦值.
(1)過點作
于
,過點
作
于
,連接
.
平面
及平面
都與平面
垂直,
平面平面
,
,
平面
,
平面
,同理可證
平面
,
.
矩形
中,
與
全等,
.
四邊形
是平行四邊形,
.
又平面
,
平面
,
平面
;
(2)矩形中,
,以
為原點,
為
軸,
為
軸,建立空間直角坐標系
,
則、
、
,
,
,
設平面的法向量為
,則
,即
,
令,得
,則
,
易得平面的法向量為
,
,
因此,二面角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程是
,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程;
(2)設曲線交于點
,曲線
與
軸交于點
,求線段
的中點到點
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為:,經過點
,傾斜角為
的直線l與曲線C交于A,B兩點
(I)求曲線C的直角坐標方程和直線l的參數方程;
(Ⅱ)求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖()是某品牌汽車
年月銷量統計圖,圖(
)是該品牌汽車月銷量占所屬汽車公司當月總銷量的份額統計圖,則下列說法錯誤的是( )
A.該品牌汽車年全年銷量中,
月份月銷量最多
B.該品牌汽車年上半年的銷售淡季是
月份,下半年的銷售淡季是
月份
C.年該品牌汽車所屬公司
月份的汽車銷量比
月份多
D.該品牌汽車年下半年月銷量相對于上半年,波動性小,變化較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應獎勵.已知職員一年來的工作業績分數的莖葉圖如圖所示:
(1)根據職員的業績莖葉圖求出他這一年的工作業績的中位數和平均數;
(2)若記職員的工作業績的月平均數為
.
①已知該公司還有6位職員的業績在100以上,分別是,
,
,
,
,
,在這6人的業績里隨機抽取2個數據,求恰有1個數據滿足
(其中
)的概率;
②由于職員的業績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領取獎金.公司準備了9張卡片,其中有1張卡片上標注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規則是:獲獎職員需要從9張卡片中隨機抽出3張,這3張卡片上的金額數之和就是該職員所得獎金.記職員
獲得的獎金為
(千元),求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,將曲線
向左平移
個單位長度得到曲線
.
(1)求曲線的參數方程;
(2)已知為曲線
上的動點,
兩點的極坐標分別為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
,曲線
的參數方程為:
(
為參數),
,
為直線
上距離為
的兩動點,點
為曲線
上的動點且不在直線
上.
(1)求曲線的普通方程及直線
的直角坐標方程.
(2)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為我國數學家趙爽(約3世紀初)在為《周牌算經》作注時驗證勾股定理的示意圖,現在提供6種不同的顏色給其中5個小區域涂色,規定每個區域只涂一種顏色,相鄰區域顏色不同,則,
區域涂同色的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com