【題目】已知橢圓的中心在原點
,焦點在
軸上,
為橢圓
短軸的一個端點,
、
為橢圓的左、右焦點,線段
的延長線與橢圓
相交于點
,且
.
(1)求橢圓的方程;
(2)如圖,點為橢圓上一動點(非長軸端點),
的延長線與橢圓交于
點,
的延長線與橢圓交于
點,求
面積的最大值.
【答案】(1);(2)
.
【解析】
(1)根據橢圓短軸頂點求得;結合
,求得點
的坐標,根據點
的坐標滿足橢圓方程,結合
,求得
,則橢圓方程即可求解;
(2)根據直線斜率是否存在,進行分類討論;當直線斜率存在時,設出直線方程,聯立橢圓方程,利用韋達定理,求得弦長
,求得
到直線
的距離,即可求得
到直線
的距離,利用面積公式,結合均值不等式,即可容易求得面積的最值.
(1)設橢圓的方程為
,右焦點
,
因為為橢圓短軸的一個端點,則
.
因為,
故可得,設點
坐標為
,
即,解得
.
則點.
因為點在橢圓上,則
,即
.
又,則
,得
,
所以橢圓的標準方程是
.
(2)①當直線的斜率不存在時,不
妨取,
,
,
故;
②當直線的斜率存在時,設直線
的方程為
,
,
,
聯立方程,化簡得
,
則,
,
,
,
點到直線
的距離
,
因為是線段
的中點,所以點
到直線
的距離為
,
∴,
∵,又
,所以等號不成立.
∴,
綜上可得,面積的最大值為
.
科目:高中數學 來源: 題型:
【題目】如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=AC,AE=
AB,BD,CE相交于點F.
(Ⅰ)求證:A,E,F,D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于實數x的一元二次方程.
Ⅰ
若a是從區間
中任取的一個整數,b是從區間
中任取的一個整數,求上述方程有實根的概率.
Ⅱ
若a是從區間
任取的一個實數,b是從區間
任取的一個實數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品的三個質量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產品的等級. 若S≤4, 則該產品為一等品. 現從一批該產品中, 隨機抽取10件產品作為樣本, 其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數據估計該批產品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產品,
(1) 用產品編號列出所有可能的結果;
(2) 設事件B為 “在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數值的隨機數,指定0,1表示沒有擊中目標,2,3,4,5,6,7, 8,9表示擊中目標,以4個隨機數為一組,代表射擊4次的結果,經隨機模擬產生了 20組隨機數:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據以上數據估計該射擊運動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,
得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
優秀 | 非優秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com