精英家教網 > 高中數學 > 題目詳情

【題目】已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)2+a3(x﹣1)3+…+an(x﹣1)n , (其中n∈N*
(1)求a0及Sn=a1+2a2+3a3+…+nan
(2)試比較Sn與n3的大小,并說明理由.

【答案】
(1)解:取x=1,可得

對等式兩邊求導,得 ,

取x=2,則


(2)解:要比較Sn與n3的大小,即比較:3n1與n2的大小,

當n=1,2時,3n1<n2 當n=3時,3n1=n2;當n=4,5時,3n1>n2

猜想:當n≥4時,3n1>n2,下面用數學歸納法證明:

由上述過程可知,n=4時結論成立,

假設當n=k,(k≥4)時結論成立,即3k1>k2

當n=k+1時,3k+1)﹣1=33k1>3k2

而3k2﹣(k+1)2=2k2﹣2k﹣1=2k(k﹣1)﹣1≥2×4×3﹣1=23>0,

∴3k+1)﹣1>33k1>3k2>(k+1)2,故當n=k+1時結論也成立,

∴當n≥4時,3n1>n2成立.

綜上得,當n=1,2時, ; 當n=3時, ;當n≥4,n∈N*時,


【解析】(1)取x=1,即可求得 a0的值.對所給的等式兩邊求導,再取x=2,可得Sn的值.(2)要比較Sn與n3的大小,即比較:3n1與n2的大小,當n=1,2時,3n1<n2; 當n=3時,3n1=n2; 當n=4,5時,3n1>n2 . 猜想:當n≥4時,3n1>n2 , 再用數學歸納法證明.
【考點精析】通過靈活運用數列的前n項和,掌握數列{an}的前n項和sn與通項an的關系即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若關于的不等式上恒成立,求的取值范圍;

(2)設函數,若上有兩個不同極值點,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在統計學中,偏差是指個別測定值與測定的平均值之差,在成績統計中,我們把某個同學的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差(單位:分)與物理偏差(單位:分)之間的關系進行偏差分析,決定從全班40位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如表:

(1)已知之間具有線性相關關系,求關于的線性回歸方程;

(2)若這次考試該班數學平均分為120分,物理平均分為92,試預測數學成績126分的同學的物理成績.

參考公式: ,

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的函數
(1)如果函數 ,求b、c;
(2)設當x∈( ,3)時,函數y=f(x)﹣c(x+b)的圖象上任一點P處的切線斜率為k,若k≤2,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

Ⅰ)求函數的單調遞增區間;

Ⅱ)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位,得到函數的圖象,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,∠B的平分線BN所在直線方程為x﹣2y﹣5=0.求:
(1)頂點B的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N分別是BC1 , CD1的中點,則下列說法錯誤的是(
A.MN與CC1垂直
B.MN與AC垂直
C.MN與BD平行
D.MN與A1B1平行

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數在點處的切線為

1)求實數, 的值;

2)是否存在實數,當時,函數的最小值為,若存在,求出的取值范圍;若不存在,說明理由;

3)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且

時,求曲線在點處的切線方程;

求函數的單調區間;

若函數有最值,寫出的取值范圍.(只需寫出結論

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视