【題目】為弘揚我國古代的“六藝文化”,某夏令營主辦單位計劃利用暑期開設“禮”“樂”“射”“御”“書”“數”六門體驗課程,每周一門,連續開設六周.則“課程‘樂’不排在第一周,課程‘御’不排在最后一周”的概率為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐ABCD中,
和
都是等邊三角形,平面PAD
平面ABCD,且
,
.
(1)求證:CDPA;
(2)E,F分別是棱PA,AD上的點,當平面BEF//平面PCD時,求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,斜率為的直線交拋物線
于
兩點,已知點
的橫坐標比點
的橫坐標大4,直線
交線段
于點
,交拋物線于點
.
(1)若點的橫坐標等于0,求
的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數)。在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的極坐標方程為
。
(1)求直線的普通方程和圓
的直角坐標方程;
(2)設圓與直線
交于
,
兩點,若點
的坐標為
,求
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸建極坐標系,直線
的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為
與直線
的交點為
,求
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下列兩個命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內,并且都不在平面β內,直線l,m中至少有一條與平面β相交.則甲是乙的( 。
A.充分且必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了提升學生“數學建模”的核心素養,某校數學興趣活動小組指導老師給學生布置了一項探究任務:如圖,有一張邊長為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片作為底面,從剩余梯形
中裁出三個全等的矩形作為側面,圍成一個無蓋的三棱柱(不計損耗).
(1)若三棱柱的側面積等于底面積,求此三棱柱的底面邊長;
(2)當三棱柱的底面邊長為何值時,三棱柱的體積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數(其中
)的圖象如圖所示,為了得到
的圖象,則只要將
的圖象上所有的點( )
A.向左平移個單位長度,縱坐標縮短到原來的
,橫坐標不變
B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變
C.向右平移個單位長度,縱坐標縮短到原來的
,橫坐標不變
D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com