【題目】已知函數(其中
是自然對數的底數),
,
.
(1)記函數,且
,求
的單調增區間;
(2)若對任意,
,
,均有
成立,求實數
的取值范圍.
【答案】(1),
;(2)
【解析】試題分析:(1)求單調區間的方法是求出的解
,確定
(或
)的取值區間,即函數的單調區間,此可用列表方法得出(同時可得出極值);(2)本小題不等式
或有絕對值符號,有兩個參數
,由于函數
是增函數,因此設
,則有
,原問題等價于
恒成立,
分兩個問題,恒成立和
恒成立,前面轉化為
,可以考慮函數
在
上是單調遞增的,后面一個轉化為
,可以考慮函數
在
上是單調遞增的.
試題解析:(1),
,
得或
,
列表如下:(,
)
極大值 | 極小值 |
的單調增區間為:
,
,減區間為
;
(2)設,
是單調增函數,
,
;
①由得:
,
即函數在
上單調遞增,
在
上恒成立,
在
上恒成立;
令,
,
時,
;
時,
;
,
;
②由得:
,
即函數在
上單調遞增,
在
上恒成立,
在
上恒成立;
函數
在
上單調遞減,
當
時,
,
,
綜上所述,實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】已知F1,F2分別為雙曲線的左、右焦點,P為雙曲線右支上的任意一點,若
的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A. (1,+∞) B. (1,2] C. (1,] D. (1,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】寶寶的健康成長是媽媽們最關心的問題,父母親為嬰兒選擇什么品牌的奶粉一直以來都是育嬰中的一個重要話題,為了解過程奶粉的知名度和消費者的信任度,某調查小組特別調查記錄了某大型連鎖超市2015年與2016年這兩年銷售量前5名的五個品牌奶粉的銷量(單位:罐),繪制如下的管狀圖:
(1)根據給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名;
(2)分別計算這5個品牌奶粉2016年所占總銷量(僅指這5個品牌奶粉的總銷量)的百分比(百分數精確到各位),并將數據填入如下餅狀圖中的括號內;
(3)試以(2)中的百分比作為概率,若隨機選取2名購買這5個品牌中任意1個品牌的消費者進行采訪,記為被采訪中購買飛鶴奶粉的人數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2x﹣cosx,{an}是公差為 的等差數列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱臺中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點,
(
,
).
(1)設中點為
,
,求證:
平面
;
(2)若到平面
的距離為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知在平面直角坐標系中,圓
的參數方程為
(
為參數)以
軸為極軸,
為極點建立極坐標系,在該極坐標系下,圓
是以點
為圓心,且過點
的圓心.
(1)求圓及圓
在平而直角坐標系
下的直角坐標方程;
(2)求圓上任一點
與圓
上任一點之間距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4 坐標系與參數方程
在直角坐標系中,圓
,曲線
的參數方程為
為參數),并以
為極點,
軸正半軸為極軸建立極坐標系.
(1)寫出的極坐標方程,并將
化為普通方程;
(2)若直線的極坐標方程為
與
相交于
兩點,
求的面積(
為圓
的圓心).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸上,離心率
.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點為橢圓
上一點,直線
的方程為
,求證:直線
與橢圓
有且只有一個交點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com