【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且acosC,bcosB,ccosA成等差數列.
(1)求角B的大。
(2)求2sin2A+cos(A﹣C)的取值范圍.
【答案】
(1)解: ∵2bcosB=acosC+ccosA,∴2sinBcosB=sinAcosC+cosAsinC.
∴2sinBcosB=sin(A+C),又∵A+C=π﹣B0<B<π,
∴ ,即
.
(2)解: 由(1)得: ,
,△ABC為銳角三角形,
則 ,∴
.
=
.
∵ ,
∴ ,
即2sin2A+cos(A﹣C) .
【解析】(1)利用正弦定理、等差數列的定義和性質以及誘導公式可得 ,由此求得角B的大小.(2)三角函數的恒等變換把要求的式子化為
,根據角A的范圍,求出
的
范圍.
【考點精析】本題主要考查了等差數列的性質的相關知識點,需要掌握在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】為了檢測某種產品的質量(單位:千克),抽取了一個容量為N的樣本,整理得到的數據作出了頻率分布表和頻率分布直方圖如圖:
分組 | 頻數 | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產品中隨機抽取一件,試估計這件產品的質量少于25千克的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn , 若對于任意的正整數n都有Sn=2an﹣3n.
(1)設bn=an+3,求證:數列{bn}是等比數列,并求出{an}的通項公式;
(2)求數列{nan}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】O為原點的直角坐標系中,點A(4,﹣3)為△OAB的直角頂點,已知AB=2OA,且點B的縱坐標大于0
(1)求 的坐標;
(2)求圓C1:x2﹣6x+y2+2y=0關于直線OB對稱的圓C2的方程;在直線OB上是否存在點P,過點P的任意一條直線如果和圓C1圓C2都相交,則該直線被兩圓截得的線段長相等,如果存在求出點P的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,曲線
:
,在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線
:
.
(Ⅰ)寫出,
的直角坐標方程;
(Ⅱ)點,
分別是曲線
,
上的動點,且點
在
軸的上側,點
在
軸的左側,
與曲線
相切,求當
最小時,直線
的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
(1)求A∩B;
(2)若AC,求實數 m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2 , 直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經過定點,并求出定點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com