提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度
(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當
時,車流速度
是車流密度
的一次函數.
(Ⅰ)當時,求函數
的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)
可以達到最大,并求出最大值.(精確到1輛/小時).
(Ⅰ);(Ⅱ)當車流密度為100輛/千米時,車流量可以達到最大,最大值約為3333輛/小時.
解析試題分析:(Ⅰ)根據題意, :當時,
,當
時,是一次函數, 可設為
,將
與
代入求出
即可;(Ⅱ)分段函數最值分段求, 當
時,
為增函數,故當
時,其最大值為
,當
時,是二次函數,利用二次函數性質,求出最大值,然后比較,誰最大為誰.
試題解析:(Ⅰ)由題意:當時,
;當
時,設
,顯然
在
是減函數,由已知得
,解得
,故函數
的表達式為
(Ⅱ)依題意并由(Ⅰ)可得,當
時,
為增函數,故當
時,其最大值為
;當
時,
,當且僅當
,即
時,等號成立.所以,當
時,
在區間
上取得最大值
.
綜上,當時,
在區間
上取得最大值
,
即當車流密度為100輛/千米時,車流量可以達到最大,最大值約為3333輛/小時.
考點:1、求函數解析式, 2、求二次函數最大值.
科目:高中數學 來源: 題型:解答題
已知函數圖象上一點
處的切線方程為
.
(1)求的值;
(2)若方程在
內有兩個不等實根,求
的取值范圍(其中
為自然對數的底數);(3)令
,若
的圖象與
軸交于
(其中
),
的中點為
,求證:
在
處的導數
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在半徑為、圓心角為
的扇形的弧上任取一點
,作扇形的內接矩形
,使點
在
上,點
在
上,設矩形
的面積為
,
(Ⅰ)按下列要求求出函數關系式:
①設,將
表示成
的函數關系式;
②設,將
表示成
的函數關系式;
(Ⅱ)請你選用(1)中的一個函數關系式,求出的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)某沿海地區養殖的一種特色海鮮上市時間僅能持續5個月,預測上市初期和后期會因供應不足使價格呈持續上漲態勢,而中期又將出現供大于求,使價格連續下跌.現有三種價格模擬函數:①;②
;③
.(以上三式中
均為常數,且
)
(1)為準確研究其價格走勢,應選哪種價格模擬函數(不必說明理由)
(2)若,
,求出所選函數
的解析式(注:函數定義域是
.其中
表示8月1日,
表示9月1日,…,以此類推);
(3)在(2)的條件下研究下面課題:為保證養殖戶的經濟效益,當地政府計劃在價格下跌期間積極拓寬外銷,請你預測該海鮮將在哪幾個月份內價格下跌.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數和點
,過點
作曲線
的兩條切線
、
,切點分別為
、
.
(Ⅰ)設,試求函數
的表達式;
(Ⅱ)是否存在,使得
、
與
三點共線.若存在,求出
的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數,在區間
內總存在
個實數
,
,使得不等式
成立,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于在區間 [ m,n ] 上有意義的兩個函數與
,如果對任意
,均有
,則稱
與
在 [ m,n ] 上是友好的,否則稱
與
在 [ m,n ]是不友好的.現有兩個函數
與
(a > 0且
),給定區間
.
(1)若與
在給定區間
上都有意義,求a的取值范圍;
(2)討論與
在給定區間
上是否友好.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com