【題目】為了調查民眾對國家實行“新農村建設”政策的態度,現通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數分布和支持“新農村建設”人數如下表:
年齡 | ||||||
頻數 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新農村建設” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根據上述統計數據填下面的列聯表,并判斷是否有
的把握認為以50歲為分界點對“新農村建設”政策的支持度有差異;
年齡低于50歲的人數 | 年齡不低于50歲的人數 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)現從年齡在內的5名被調查人中任選兩人去參加座談會,求選出兩人中恰有一人支持新農村建設的概率.
參考數據:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
.
科目:高中數學 來源: 題型:
【題目】在平面立角坐標系中,過點
的圓的圓心
在
軸上,且與過原點傾斜角為
的直線
相切.
(1)求圓的標準方程;
(2)點在直線
上,過點
作圓
的切線
、
,切點分別為
、
,求經過
、
、
、
四點的圓所過的定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設相互垂直的直線,
分別過橢圓
的左、右焦點
,
,且與橢圓
的交點分別為
、
和
、
.
(1)當的傾斜角為
時,求以
為直徑的圓的標準方程;
(2)問是否存在常數,使得
恒成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.2019年1月1日實施的個稅新政主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養老人等.
新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅級數 | 每月應納稅所得額(含稅)=收入-個稅起征點 | 稅率(%) | 每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元部分 | 10 | 超過3000元至12000元部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元部分 | 30 | 超過35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
隨機抽取某市1000名同一收入層級的從業者的相關資料,經統計分析,預估他們2019年的人均月收入24000元.統計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養老人扣除、只符合子女教育扣除但不符合贍養老人扣除、只符合贍養老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養老人扣除的人數之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標準為:住房1000元/月,子女教育每孩1000元/月,贍養老人2000元/月等。
假設該市該收入層級的從業者都獨自享受專項附加扣除,將預估的該市該收入層級的
從業者的人均月收入視為其個人月收入.根據樣本估計總體的思想,解決如下問題:
(1)設該市該收入層級的從業者2019年月繳個稅為
元,求
的分布列和期望;
(2)根據新舊個稅方案,估計從2019年1月開始,經過多少個月,該市該收入層級的從業者各月少繳交的個稅之和就超過2019年的月收入?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列命題,其中正確命題的個數為
①當時,
上單調遞增;
②當時,存在不相等的兩個實數
,使
;
③當時,
有3個零點.
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,過F點的直線交拋物線于不同的兩點A、B,且
,點A關于
軸的對稱點為
,線段
的中垂線交
軸于點D,則D點的坐標為
A. (2,0)B. (3,0)C. (4,0)D. (5,0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為
,橢圓
上一點
到左右兩個焦點
的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓
交于
兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com