精英家教網 > 高中數學 > 題目詳情
(本小題滿分15分)
若函數時取得極值,且當時,恒成立.
(1)求實數的值;
(2)求實數的取值范圍.
(1)(2)

試題分析:(1)由題意,是方程的一個根,設另一個根是,則
,所有
(2)所以,,
,解得







+
0
-
0
+


極大值

極小值

,所以,當時,。所以,
所以,的取值范圍是.
點評:不等式恒成立問題轉化為求函數最值
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)當時,如果函數僅有一個零點,求實數的取值范圍;
(Ⅱ)當時,試比較與1的大小;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調遞減區間為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,若,則的值等于(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數.
(Ⅰ)若,求的最小值;
(Ⅱ)若,討論函數的單調性.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數 。
如果,函數在區間上存在極值,求實數a的取值范圍;
時,不等式恒成立,求實數k的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知,其中是自然對數的底數,
(1)討論時,的單調性。
(2)求證:在(1)條件下,
(3)是否存在實數,使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知,函數.
(1)求的極值;
(2)若上為單調遞增函數,求的取值范圍;
(3)設,若在是自然對數的底數)上至少存在一個,使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數,則實數的取值范圍是     

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视