【題目】某社區新建了一個休閑小公園,幾條小徑將公園分成5塊區域,如圖,社區準備從4種顏色不同的花卉中選擇若干種種植在各塊區域,要求每個區域隨機用一種顏色的花卉,且相鄰區域(用公共邊的)所選花卉顏色不能相同,則不同種植方法的種數共有( )
A.96
B.114
C.168
D.240
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1和側面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F分別為AD,A1D1的中點.
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點B到平面ECD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為2
+
的△ABC滿足sinA:sinB:sinC=(
﹣1):
:(
+1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ax+ (a∈R).
(1)當a=﹣ 時,求函數f(x)的單調區間和極值.
(2)若g(x)=f(x)+a(x﹣1)有兩個零點x1 , x2 , 且x1<x2 , 求證:x1+x2>1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(ax﹣1)e2x+x+1(其中e為自然對數的e底數).
(1)若a=0,求函數f(x)的單調區間;
(2)對x∈(0,+∞),f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列 滿足:①
;②所有項
;③
.
設集合 ,將集合
中的元素的最大值記為
.換句話說,
是
數列 中滿足不等式
的所有項的項數的最大值.我們稱數列
為數列
的
伴隨數列.例如,數列1,3,5的伴隨數列為1,1,2,2,3.
(1)若數列 的伴隨數列為1,1,1,2,2,2,3,請寫出數列
;
(2)設 ,求數列
的伴隨數列
的前100之和;
(3)若數列 的前
項和
(其中
常數),試求數列
的伴隨數列
前
項和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣x2與g(x)=(x﹣2)2﹣ ﹣m的圖象上存在關于(1,0)對稱的點,則實數m的取值范圍是( )
A.(﹣∞,1﹣ln2)
B.(﹣∞,1﹣ln2]
C.(1﹣ln2,+∞)
D.[1﹣ln2,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com