【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1和側面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F分別為AD,A1D1的中點.
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的長度.
【答案】解:(Ⅰ)證明:因為側面ADD1A1和側面CDD1C1都是矩形,
所以DD1⊥AD,且DD1⊥CD.
因為AD∩CD=D,
所以DD1⊥平面ABCD.
(Ⅱ)證明:因為△ABD是正三角形,且E為AD中點,
所以BE⊥AD.
因為DD1⊥平面ABCD,
而BE平面ABCD,
所以BE⊥DD1.
因為AD∩DD1=D,
所以BE⊥平面ADD1A1.
因為BE平面A1BE,
所以平面A1BE⊥平面ADD1A1.
(Ⅲ)解:因為BC∥AD,F為A1D1的中點,
所以BC∥A1F.
所以B、C、F、A1四點共面.
因為CF∥平面A1BE,
而平面BCFA1∩平面A1BE=A1B,
所以CF∥A1B.
所以四邊形BCFA1是平行四邊形.
所以
【解析】(Ⅰ)證明DD1⊥AD,且DD1⊥CD,即可證明:DD1⊥平面ABCD;(Ⅱ)證明BE⊥平面ADD1A1.即可證明:平面A1BE⊥平面ADD1A1;(Ⅲ)證明四邊形BCFA1是平行四邊形,求棱BC的長度.
【考點精析】通過靈活運用直線與平面平行的判定和直線與平面垂直的判定,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想即可以解答此題.
科目:高中數學 來源: 題型:
【題目】(2015·陜西)在直角坐標系xOy中,直線l的參數方程為(t為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,
c的極坐標方程為
=2
sin
.
(1)寫出c的直角坐標方程;
(2)P為直線l上一動點,當P到圓心C的距離最小時,求P的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)在其圖像上存在不同的兩點A(x1 , y1),B(x2 , y2),其坐標滿足條件:|x1x2+y1y2|﹣ 的最大值為0,則稱f(x)為“柯西函數”, 則下列函數:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)= .
其中為“柯西函數”的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點 (Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖莖葉圖記錄了甲,乙兩班各六名同學一周的課外閱讀時間(單位:小時),已知甲班數據的平均數為13,乙班數據的中位數為17,那么x的位置應填;y的位置應填 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩個集合A,B,滿足BA.若對任意的x∈A,存在ai , aj∈B(i≠j),使得x=λ1ai+λ2aj(λ1 , λ2∈{﹣1,0,1}),則稱B為A的一個基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個數的最小值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區新建了一個休閑小公園,幾條小徑將公園分成5塊區域,如圖,社區準備從4種顏色不同的花卉中選擇若干種種植在各塊區域,要求每個區域隨機用一種顏色的花卉,且相鄰區域(用公共邊的)所選花卉顏色不能相同,則不同種植方法的種數共有( )
A.96
B.114
C.168
D.240
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com