【題目】如圖莖葉圖記錄了甲,乙兩班各六名同學一周的課外閱讀時間(單位:小時),已知甲班數據的平均數為13,乙班數據的中位數為17,那么x的位置應填;y的位置應填 .
科目:高中數學 來源: 題型:
【題目】上海自貿區某種進口產品的關稅稅率為,其市場價格
(單位:千元,
與市場供應量
(單位:萬件)之間近似滿足關系式:
.
(1)請將表示為關于
的函數,并根據下列條件計算:若市場價格為7千元,則市場供應量約為2萬件.試確定
的值;
(2)當時,經調查,市場需求量
(單位:萬件)與市場價格
近似滿足關系式:
.為保證市場供應量不低于市場需求量,試求市場價格
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中 中,已知曲線
經過點
,其參數方程為
(
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系.
(1)求曲線 的極坐標方程;
(2)若直線 交
于點
,且
,求證:
為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若對于定義在上的函數
,其圖象是連續不斷的,且存在常數
使得
對任意實數
都成立,則稱
是一個“
特征函數”.下列結論中正確的個數為( 。
①是常數函數中唯一的“
特征函數”;
②不是“
特征函數”;
③“特征函數”至少有一個零點;
④是一個“
特征函數”.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點M(2,1),且離心率為
. (Ⅰ)求橢圓C的方程;
(Ⅱ)設A(0,﹣1),直線l與橢圓C交于P,Q兩點,且|AP|=|AQ|,當△OPQ(O為坐標原點)的面積S最大時,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1和側面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F分別為AD,A1D1的中點.
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)當時,函數
恒有意義,求實數
的取值范圍;
(2)是否存在這樣的實數,使得函數f(x)在區間
上為減函數,并且最大值為
?如果存在,試求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2=
,且直線l經過曲線C的左焦點F. ( I )求直線l的普通方程;
(Ⅱ)設曲線C的內接矩形的周長為L,求L的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ax+ (a∈R).
(1)當a=﹣ 時,求函數f(x)的單調區間和極值.
(2)若g(x)=f(x)+a(x﹣1)有兩個零點x1 , x2 , 且x1<x2 , 求證:x1+x2>1.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com