如圖,橢圓的焦點在x軸上,左右頂點分別為
,上頂點為B,拋物線
分別以A,B為焦點,其頂點均為坐標原點O,
與
相交于 直線
上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點
,求
的最小值。
(1)橢圓C:,拋物線C1:
拋物線C2:
;(2)
.
解析試題分析:(1)由題意可得A(a,0),B(0,),而拋物線C1,C2分別是以A、B為焦點,∴可求得C2的解析式:
,設C1的解析式為
,再由C1與C2的交點在直線y=
x上,
;(2)直線OP的斜率為
,所以直線
的斜率為
,設直線
方程為
,
設M()、N(
),將直線方程與橢圓方程聯立,利用解析幾何中處理直線與圓錐曲線中常用的“設而不求”思想,可以得到
,結合韋達定理,即可得到
的最值.
(1)由題意可得A(a,0),B(0,),故拋物線C1的方程可設為
,C2的方程為
1分
由 得
3分
∴橢圓C:,拋物線C1:
拋物線C2:
5分; (2)由(1)知,直線OP的斜率為
,所以直線
的斜率為
,設直線
方程為
由,整理得
設M()、N(
),則
7分
因為動直線與橢圓C交于不同兩點,所以
解得 8分
,
∵,
∴ 11分
∵,所以當
時,
取得最小值,
其最小值等于 13分
考點:1、圓錐曲線解析式的求解;2、直線與橢圓相交綜合題.
科目:高中數學 來源: 題型:解答題
如圖,曲線由上半橢圓
和部分拋物線
連接而成,
的公共點為
,其中
的離心率為
.
(1)求的值;
(2)過點的直線
與
分別交于
(均異于點
),若
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知P是圓上任意一點,點N的坐標為(2,0),線段NP的垂直平分線交直線MP于點Q,當點P在圓M上運動時,點Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當時,在x軸上是否存在一定點E,使得對曲線C的任意一條過E的弦AB,
為定值?若存在,求出定點和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點
到準線的距離為
.過點
作直線交拋物線
與
兩點(
在第一象限內).
(1)若與焦點
重合,且
.求直線
的方程;
(2)設關于
軸的對稱點為
.直線
交
軸于
. 且
.求點
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分,(1)小問4分,(2)小問8分)已知為橢圓
上兩動點,
分別為其左右焦點,直線
過點
,且不垂直于
軸,
的周長為
,且橢圓的短軸長為
.
(1)求橢圓的標準方程;
(2)已知點為橢圓
的左端點,連接
并延長交直線
于點
.求證:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點是橢圓
上任一點,點
到直線
的距離為
,到點
的距離為
,且
.直線
與橢圓
交于不同兩點
、
(
,
都在
軸上方) ,且
.
(1)求橢圓的方程;
(2)當為橢圓與
軸正半軸的交點時,求直線
方程;
(3)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓:
的左頂點為
,直線
交橢圓
于
兩點(
上
下),動點
和定點
都在橢圓
上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點
的坐標.
(3)若為實數,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013·上海高考)如圖,已知雙曲線C1:-y2=1,曲線C2:|y|=|x|+1.P是平面內一點.若存在過點P的直線與C1,C2都有共同點,則稱P為“C1-C2型點”.
(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證).
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”.
(3)求證:圓x2+y2=內的點都不是“C1-C2型點”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com