【題目】某中學長期堅持貫徹以人為本,因材施教的教育理念,每年都會在校文化節期間舉行“數學素養能力測試”和“語文素養能力測試”兩項測試,以給學生課外興趣學習及輔導提供參考依據.成績分為,
,
,
,
五個等級(等級
,
,
,
,
分別對應5分,4分,3分,2分,1分).某班學生兩科的考試成績的數據統計如圖所示,其中“語文素養能力測試”科目的成績為
的考生有3人.
(1)求該班“數學素養能力測試”的科目平均分以及“數學素養能力測試”科目成績為的人數;
(2)若該班共有9人得分大于7分,其中有2人10分,3人9分,4人8分.從這9人中隨機抽取三人,設三人的成績之和為,求
.
(3)從該班得分大于7分的9人中選3人即甲,乙,丙組隊參加學校內的“數學限時解題挑戰賽”.規則為:每隊首先派一名隊員參加挑戰賽,在限定的時間,若該生解決問題,即團隊挑戰成功,結束挑戰;若解決問題失敗,則派另外一名隊員上去挑戰,直至派完隊員為止.通過訓練,已知甲,乙,丙通過挑戰賽的概率分別是,
,
,問以怎樣的先后順序派出隊員,可使得派出隊員數目的均值達到最?(只需寫出結果)
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1是菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點,
.
(1)設G是OC的中點,證明:∥平面
;
(2)證明:在內存在一點M,使FM⊥平面BOE,求點M到OA,OB的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,其短軸上的一個端點到
的距離為
.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓
的“準圓”上的動點,過點
作橢圓的切線
交“準圓”于點
.
①當點為“準圓”與
軸正半軸的交點時,求直線
的方程并證明
;
②求證:線段的長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下
列聯表:
分數不少于120分 | 分數不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求
的分布列(概率用組合數算式表示);
②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,且長軸長是短軸長的
倍.
(1)求橢圓的標準方程;
(2)若過橢圓左焦點
的直線
交橢圓
于
兩點,點
在
軸非負半軸上,且點
到坐標原點的距離為2,求
取得最大值時
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,點,(
)在曲線C:
上,直線l過點
且與
垂直,垂足為P.
(Ⅰ)當時,求在直角坐標系下點P坐標和l的方程;
(Ⅱ)當M在C上運動且P在線段上時,求點P在極坐標系下的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com