精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)若函數區間上單調遞增,求實數的取值范圍;

(2)設函數, 為自然對數的底數.若存在,使不等式成立,求實數的取值范圍.

【答案】(1);(2).

【解析】試題分析:1)函數單調遞增轉化為導數恒為正值,分類討論求即可;(2)分離參數,轉化為求函數的最值,利用導數即可求出最值。

試題解析:(1)當時,函數上的單調遞增函數,符合題意;

時,由,得,

∵函數在區間內單調遞增,

,則.

綜上所述,實數的取值范圍是.

(另由恒成立可得,當時,符合;

時, ,即,∴.

綜上

(2)∵存在,使不等式成立,

∴存在,使成立.

,從而,

.

由(1)知當時, 上遞增,∴.

上恒成立.

,

上單調遞增.

,∴.

實數的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】橢圓 =1上有一點M(﹣4, )在拋物線y2=2px(p>0)的準線l上,拋物線的焦點也是橢圓焦點.
(1)求橢圓的標準方程;
(2)若點N在拋物線上,過N作準線l的垂線,垂足為Q,求|MN|+|NQ|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=emx+x2﹣mx.
(1)證明:f(x)在(﹣∞,0)單調遞減,在(0,+∞)單調遞增;
(2)若對于任意x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的一個極值點.

(1)若的唯一極值點,求實數的取值范圍;

(2)討論的單調性;

(3)若存在正數,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y= 的定義域是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=1﹣ (x∈R),
(1)求反函數f1(x);
(2)解不等式f1(x)>log2(1+x)+1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)當, 恒成立,求實數的取值范圍.

(2)設上有兩個極值點.

(A)求實數的取值范圍;

(B)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,集合A={x|ax2﹣2x+2a﹣1=0},B={y|y=log2(x+ ﹣4)},p:A=,q:B=R.
(1)若p∧q為真,求a的最大值;
(2)若p∧q為為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知具有相關關系的兩個變量之間的幾組數據如下表所示:

(1)請根據上表數據在網格紙中繪制散點圖;

(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;

(3)將表格中的數據看作五個點的坐標,從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.

(參考公式: ,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视