【題目】設函數f(x)=emx+x2﹣mx.
(1)證明:f(x)在(﹣∞,0)單調遞減,在(0,+∞)單調遞增;
(2)若對于任意x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范圍.
【答案】
(1)證明:f′(x)=m(emx﹣1)+2x.
若m≥0,則當x∈(﹣∞,0)時,emx﹣1≤0,f′(x)<0;當x∈(0,+∞)時,emx﹣1≥0,f′(x)>0.
若m<0,則當x∈(﹣∞,0)時,emx﹣1>0,f′(x)<0;當x∈(0,+∞)時,emx﹣1<0,f′(x)>0.
所以,f(x)在(﹣∞,0)時單調遞減,在(0,+∞)單調遞增
(2)解:由(1)知,對任意的m,f(x)在[﹣1,0]單調遞減,在[0,1]單調遞增,故f(x)在x=0處取得最小值.
所以對于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要條件是
即
設函數g(t)=et﹣t﹣e+1,則g′(t)=et﹣1.
當t<0時,g′(t)<0;當t>0時,g′(t)>0.故g(t)在(﹣∞,0)單調遞減,在(0,+∞)單調遞增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故當t∈[﹣1,1]時,g(t)≤0.
當m∈[﹣1,1]時,g(m)≤0,g(﹣m)≤0,即合式成立;
當m>1時,由g(t)的單調性,g(m)>0,即em﹣m>e﹣1.
當m<﹣1時,g(﹣m)>0,即e﹣m+m>e﹣1.
綜上,m的取值范圍是[﹣1,1]
【解析】(1)利用f′(x)≥0說明函數為增函數,利用f′(x)≤0說明函數為減函數.注意參數m的討論;(2)由(1)知,對任意的m,f(x)在[﹣1,0]單調遞減,在[0,1]單調遞增,則恒成立問題轉化為最大值和最小值問題.從而求得m的取值范圍.
【考點精析】根據題目的已知條件,利用利用導數研究函數的單調性和函數的最大(小)值與導數的相關知識可以得到問題的答案,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x= 時,四邊形MENF的面積最;
③四邊形MENF周長l=f(x),x∈0,1]是單調函數;
④四棱錐C′﹣MENF的體積v=h(x)為常函數;
以上命題中真命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校甲、乙、丙、丁四個專業分別有150、150、400、300名學生,為了解學生的就業傾向,用分層抽樣的方法從該校這四個專業共抽取40名學生進行調查,應在丙專業抽取的學生人數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+bx+c在點x=2處取得極值c﹣16.
(1)求a,b的值;
(2)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,曲線,曲線
.以極點為坐標原點,極軸為
軸正半軸建立平面直角坐標系
,曲線
的參數方程為
(
為參數).
(1)求的直角坐標方程;
(2)與
交于不同的四點,這四點在
上排列順次為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代太極圖是一種優美的對稱圖.如果一個函數的圖像能夠將圓的面積和周長分成兩個相等的部分,我們稱這樣的函數為圓的“太極函數”.下列命題中錯誤命題的個數是( )
對于任意一個圓其對應的太極函數不唯一;
如果一個函數是兩個圓的太極函數,那么這兩個圓為同心圓;
圓
的一個太極函數為
;
圓的太極函數均是中心對稱圖形;
奇函數都是太極函數;
偶函數不可能是太極函數.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數是15.
(1)求成績在50~70分的頻率是多少;
(2)求這三個年級參賽學生的總人數是多少;
(3)求成績在80~100分的學生人數是多少.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com