精英家教網 > 高中數學 > 題目詳情

【題目】某工廠每日生產某種產品噸,當日生產的產品當日銷售完畢,產品價格隨產品產量而變化,當時,每日的銷售額(單位:萬元)與當日的產量滿足,當日產量超過噸時,銷售額只能保持日產量噸時的狀況.已知日產量為噸時銷售額為萬元,日產量為噸時銷售額為萬元.

1)把每日銷售額表示為日產量的函數;

2)若每日的生產成本(單位:萬元),當日產量為多少噸時,每日的利潤可以達到最大?并求出最大值.(注:計算時取

【答案】(1);(2)日產量為噸時,最大利潤為萬元.

【解析】

試題分析:(1)由已知條件易得以及,可得,故可得結果;(2)利潤,求分段函數的最值即可.

試題解析:(1)因為時,,所以,

時,,所以,

解得,所以當時,.

時,.

所以.

2)當日產量為噸時,每日利潤為,則.

,則,

;當時,,

是函數在內唯一的極大值點,也是最大值點,

所以萬元.

,則,顯然單調遞減,故.

結合可知,當日產量為噸時,每日的利潤可達到最大,最大利潤為萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某種產品的年銷售量與該年廣告費用支出有關,現收集了4組觀測數據列于下表:

(萬元)

1

4

5

6

(萬元)

30

40

60

50

現確定以廣告費用支出為解釋變量,銷售量為預報變量對這兩個變量進行統計分析.

(1)已知這兩個變量滿足線性相關關系,試建立之間的回歸方程;

(2)假如2017年廣告費用支出為10萬元,請根據你得到的模型,預測該年的銷售量.

(線性回歸方程系數公式).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校大一新生中的6名同學打算參加學校組織的“雅荷文學社”、“青春風街舞社”、“羽乒協會”、“演講團”、“吉他協會”五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數為( )

A. 4680 B. 4770 C. 5040 D. 5200

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是自然對數的底數.

(1)討論函數上的單調性;

(2)當時,若存在,使得,求實數的取值范圍.(參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求上的最小值;

2)若存在兩個不同的實數,使得,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系橢圓)的離心率是,拋物線的焦點的一個頂點

(1)求橢圓的方程

(2)設上的動點且位于第一象限,在點處的切線交于不同的兩點,線段的中點為,直線與過且垂直于軸的直線交于點

(i)求證:點在定直線上;

(ii)直線軸交于點記△的面積為,的面積為,的最大值及取得最大值時點的坐標

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐底面,,的中點,

(1)求的長;

(2)求二面角的正弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區間;

(2)若滿足:對任意的,都有恒成立,試確定實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線相交于、兩點,點關于軸的對稱點為

(Ⅰ)判斷點是否在直線上,并給出證明;

(Ⅱ)設,求的內切圓的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视