【題目】如圖,四棱錐的底面ABCD是正方形,
為等邊三角形,M,N分別是AB,AD的中點,且平面
平面ABCD.
證明:
平面PNB;
設點E是棱PA上一點,若
平面DEM,求
.
【答案】(1)見解析;(2)2
【解析】
(1)推導出BM=AN,CM⊥BN,PN⊥AD,從而PN⊥平面ABCD,進而CM⊥PN,由此能證明CM⊥平面PNB;
(2)連結AC,交DM于點Q,連結EQ,推導出PC∥EQ,從而PE:EA=CQ:QA,由此能求出的值.
證明:(1)在正方形ABCD中,M,N分別是AB,AD的中點,
∴BM=AN,BC=AB,∠MBC=∠NAB=90°,
∴△MBC≌△NAB,∴∠BCM=∠NAB,
又∠NBA+∠BMC=90°,∴∠NBA+∠BMC=90°,
∴CM⊥BN,
∵△PAD為等邊三角形,N是AD的中點,
∴PN⊥AD,
又平面PAD⊥平面ABCD,PN平面PAD,平面PAD∩平面ABCD=AD,
∴PN⊥平面ABCD,
又CM平面ABCD,∴CM⊥PN,
∵BN,PN平面PNB,BN∩PN=N,
∴CM⊥平面PNB.
解:(2)連結AC,交DM于點Q,連結EQ,
∵PC∥平面DEM,PC平面PAC,平面PAC∩平面DEM=EQ,
∴PC∥EQ,
∴PE:EA=CQ:QA,
在正方形ABCD中,AM∥CD,且CD=2AM,
∴CQ:QA=CD:AM=2,
∴2.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2α+
)=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為常數,
,函數
,
且方程
有等
根.
(1)求的解析式及值域;
(2)設集合,
,若
,求實數
的取值范圍;
(3)是否存在實數,使
的定義域和值域分別為
和
?若存在,求
出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點
,
,且圓心在直線
上.
(1)求圓的方程;
(2)過點的直線與圓
交于
兩點,問在直線
上是否存在定點
,使得
恒成立?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=lnx,g(x)=(2﹣a)(x﹣1)﹣2f(x). (Ⅰ)當a=1時,求函數g(x)的單調區間;
(Ⅱ)設F(x)=|f(x)|+ (b>0).對任意x1 , x2∈(0,2],x1≠x2 , 都有
<﹣1,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C1: (t為參數,t≠0),其中0≤α<π,在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2
cosθ. (Ⅰ)求C2與C3交點的直角坐標;
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn是數列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N) (I)求數列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com